Introduction •000000 **Finitely supported element** 000 From Kalton's Lemma to tightness 00000 Some consequence

Open questions

On the weak topology in Lipschitz free spaces

Colin PETITJEAN

Lluís Santaló School 2023 Santander, Spain

Introduction

Finitely supported element 000 From Kalton's Lemma to tightness 00000 Some consequenc

Open questions

On the weak topology in Lipschitz free spaces Part 2

Colin PETITJEAN

Lluís Santaló School 2023 Santander, Spain

Notation throughout this talk.

(M, d) is a **complete** metric space with a distinguished point $0 \in M$. We let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} and

$$\operatorname{Lip}_{0}(M) = \{ f : M \to \mathbb{K} \text{ Lipschitz } : f(0) = 0 \}.$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)},$$

it is a Banach space.

Then we consider the evaluation functional $\delta(x)$: Lip₀(M) $\rightarrow \mathbb{K}$ defined by $\langle \delta(x), f \rangle = f(x)$, for every $f \in \text{Lip}_0(M)$.

Definition

The *Lipschitz free space over* M is the following subspace of $Lip_0(M)^*$:

$$\mathcal{F}(M) := \overline{\operatorname{span}}^{\|\cdot\|} \left\{ \delta(x) \mid x \in M \right\}.$$

Some properties...

- $\delta: x \in M \mapsto \delta(x) \in \mathcal{F}(M)$ is an isometry.
- $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M) \rightsquigarrow \text{weak topology} = \sigma(\mathcal{F}(M), \operatorname{Lip}_0(M)).$
- If $0 \in N \subset M$, then $\mathcal{F}(N) \equiv \mathcal{F}_M(N) := \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- "The intersection theorem" [Aliaga Pernecká, 2020]:

If $(K_i)_{i \in I}$ is a family of closed subsets of M, then

$$\bigcap_{i\in I}\mathcal{F}_{M}(K_{i})=\mathcal{F}_{M}(\bigcap_{i\in I}K_{i}).$$

 \rightarrow This leads to a notion of support for elements $\gamma \in \mathcal{F}(M)$:

 $S = \operatorname{supp}(\gamma)$ is the smallest closed subset of M such that $\gamma \in \mathcal{F}_M(S)$.

[Godefroy – Kalton, 2003]: If X is a separable Banach space, then X is isometric to a subspace of F(X).

...and some classical examples.

• $M = T_1^{\omega} = \{0\} \cup \mathbb{N}$ the countably branching tree of height 1 (aka "the spider").

Then $T: \delta(n) \in \mathcal{F}(M) \mapsto e_n \in \ell_1(\mathbb{N})$ is a surjective isometry.

- $(M, d) = (\mathbb{N}, |\cdot|)$. $T : \delta(n) \in \mathcal{F}(\mathbb{N}) \mapsto \sum_{i=1}^{n} e_i \in \ell_1(\mathbb{N})$ is a surjective isometry.
- $M = ([0,1], |\cdot|)$. $T : \delta(t) \in \mathcal{F}([0,1]) \mapsto \mathbb{1}_{[0,t]} \in L^1([0,1])$ is a surjective isometry.
- [Godard, 2010]: If $S \subset \mathbb{R}$, $\lambda(S) > 0$, then $L^1([0,1]) \hookrightarrow \mathcal{F}(S) \equiv L^1(\mu_S)$.
- [Naor Schechtmann, 2007] (or [Kisljakov, 1975]): $\mathcal{F}(\mathbb{R}^2) \nleftrightarrow L^1([0,1])$.

Question

$$\mathcal{F}(\mathbb{R}^2)\simeq \mathcal{F}(\mathbb{R}^3)?$$

Introduction 0000000	Finitely supported elements	From Kalton's Lemma to tightness	Some consequences	Open questions

A research program

• Try to characterize the (linear) properties of $\mathcal{F}(M)$ in terms of the (metric) properties of M.

In this talk, we are mainly interested in **properties** which are related to the **weak topology** of $\mathcal{F}(M)$.

- $\rightarrow \text{Schur property}$
- \rightarrow weak sequential completeness
- $\rightarrow \mathsf{weak}\ \mathsf{compactness}$

 \rightarrow ...

Research program bis

Try to characterize the (linear) properties of $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(N)$ in terms of the (metric) properties of $f : M \to N$.

Wait! What is \hat{f} ?

Proposition (Linearisation property)

$$M \xrightarrow{f} N \qquad f: M \to N \text{ is Lipschitz s.t. } f(0_M) = 0_N.$$

$$\delta_M \bigvee_{i \to N} \bigvee_{i \to N} \delta_N \qquad f\left(\sum_{i=1}^n a_i \delta_M(x_i)\right) = \sum_{i=1}^n a_i \delta_N(f(x_i)).$$

Examples:

- f is bi-Lipschitz if and only if \hat{f} is a linear embedding.
- f is a Lipschitz retraction if and only if \hat{f} is a linear projection.

Finitely supported elements

Prom Kalton's Lemma to tightness

Some consequences

Open questions

Introduction 0000000	From Kalton's Lemma to tightness	

Definition

$$\mathcal{FS}_k(M) := \{\gamma \in \mathcal{F}(M) : |\operatorname{supp} \gamma| \le k\}.$$

Lemma (Aliaga – Noûs – Procházka – P., 2021)

The set $\mathcal{FS}_k(M)$ is weakly closed.

Theorem

If a sequence $(\gamma_n)_n \subset \mathcal{FS}_k(M)$ weakly converges to some $\gamma \in \mathcal{F}(M)$, then $\gamma \in \mathcal{FS}_k(M)$ and $(\gamma_n)_n$ converges to γ in the norm topology.

 \rightarrow A (rather elaborated) proof in the case $\gamma = 0$ can be found in a paper due to [Albiac – Kalton, 2009].

 \rightarrow For a more direct proof by induction, [Abbar – Coine – Petitjean, 2022].

 \rightarrow A (probably similar) proof is due to [Aliaga – Pernecká – Smith, ????]

Consequences: Let $f : M \to N$ be a Lipschitz map s.t. f(0) = 0.

$$\widehat{f}$$
 is compact $\iff \widehat{f}$ is weakly compact.

Proof.

[Cabrera-Padilla – Jiménez-Vargas, 2016]: f̂ : F(M) → F(N) is (weakly) compact if and only if

$$S := \left\{ rac{\delta(f(x)) - \delta(f(y))}{d(x, y)} \mid x \neq y \in M
ight\}$$

is relatively (weakly) compact in $\mathcal{F}(N)$.

• $S \subset \mathcal{FS}_2(M)$.

Remark [Abbar - Coine - P., 2023]:

Also works for weighted versions $w\hat{f}$ of these "Lipschitz operators".

 \rightarrow Leads to characterizations (in terms of metric properties of f) of those (weighted) Lipschitz operators $w\hat{f}$ which are (weakly) compact.

Introc	uction

Finitely supported elements

Prom Kalton's Lemma to tightness

Some consequences

Open questions

Introduction 0000000	From Kalton's Lemma to tightness ○●○○○	Some consequences	

Definition

A Banach space X has the **Schur property** if: $\forall (x_n)_n \subset X$,

$$x_n \stackrel{w}{\longrightarrow} 0 \iff x_n \stackrel{\|\cdot\|}{\longrightarrow} 0.$$

Examples:

- ℓ_1 has the Schur property (gliding hump technique).
- c_0 and ℓ_p (p > 1) fail it since $e_n \stackrel{w}{\longrightarrow} 0$ but $||e_n|| = 1$, $\forall n \in \mathbb{N}$.
- X reflexive + Schur $\implies \dim(X) < \infty$.
- L^1 does not have it since it contains a copy of ℓ_2 .

Theorem (Kalton, 2004)

If M is bounded and $0 then <math>\mathcal{F}(M, d^p)$ has the Schur property.

Introduction 0000000	From Kalton's Lemma to tightness ○○●○○	Some consequences	

Theorem (Kalton, 2004 – Upgraded version)

If $lip_0(M)$ separates the points of M uniformly, then $\mathcal{F}(M)$ has the Schur property.

Lemma (Key argument)

If M is bounded then and $\gamma_n \xrightarrow{w} 0$ then: $\forall \varepsilon > 0$, $\forall \delta > 0$, $\exists E \subset M$ finite such that:

 $\sup_{n\in\mathbb{N}}\operatorname{dist}(\gamma_n,\mathcal{F}([E]_{\delta}))<\varepsilon,$

where $[E]_{\delta} = \{y \in M : d(y, E) \leq \delta\}.$

Remark:

$$\sup_{n\in\mathbb{N}}\mathsf{dist}(\gamma_n,\mathcal{F}([E]_{\delta}))<\varepsilon\iff\{\gamma_n:n\in\mathbb{N}\}\subset\mathcal{F}([E]_{\delta})+\varepsilon B_{\mathcal{F}(M)}.$$

Introduction 0000000	Finitely supported elements	From Kalton's Lemma to tightness 000●0	Some consequences	Open questions 000

Generalizing this proof, one can get:

Proposition (Aliaga – Noûs – Petitjean – Procházka, 2021)

Let W be a bounded set in $\mathcal{F}(M)$. Then:

W is weakly precompact \implies W has Kalton's property.

- A sequence (x_n)_n is a Banach space X is weakly Cauchy if (⟨x^{*}, x_n⟩)_n is convergent for every x^{*} ∈ X^{*}.
- W ⊂ X is weakly precompact whenever every sequence admits a weakly Cauchy subsequence.
- $W \subset \mathcal{F}(M)$ has *Kalton's property* if: $\forall \varepsilon > 0, \exists \delta > 0, \exists E \subset M$ finite s.t.

 $W \subset \mathcal{F}([E]_{\delta}) + \varepsilon B_{\mathcal{F}(M)}.$ $W \subset \mathcal{F}([E]_{\delta}) + \varepsilon B_{\mathcal{F}(M)}.$

Introduction 0000000	From Kalton's Lemma to tightness 0000●	Some consequences	

• $W \subset \mathcal{F}(M)$ has Kalton's property if: $\forall \varepsilon > 0, \exists \delta > 0, \exists E \subset M$ finite s.t.

$$W \subset \mathcal{F}([E]_{\delta}) + \varepsilon B_{\mathcal{F}(M)}.$$

Theorem (Aliaga – Noûs – Procházka – P., 2021)

If W has Kalton's property, then W is tight, that is: $\forall \epsilon > 0$, $\exists K \subset M$ compact such that

$$W \subset \mathcal{F}(K) + \varepsilon B_{\mathcal{F}(M)}.$$

Moreover, there exists a linear map T : span $\delta(W) \to \mathcal{F}(K)$ s.t.

- $\|\mu T\mu\| \leq \varepsilon$, $\forall \mu \in W$;
- There is a sequence $(T_k)_k$ of bounded operators on $\mathcal{F}(M)$ such that $T_k \to T$ uniformly on W.

Summary: Weak precompactness \implies Kalton's property \iff Tightness.

Introduction 0000000		From Kalton's Lemma to tightness	Some consequences •000	
-------------------------	--	----------------------------------	---------------------------	--

Finitely supported elements

2 From Kalton's Lemma to tightness

3 Some consequences

Open questions

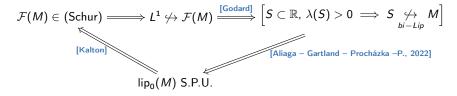
Introduction 0000000	From Kalton's Lemma to tightness	Some consequences 0●00	

1. On the Schur property

Corollary (Aliaga – Noûs – Procházka – P., 2021)

 $\mathcal{F}(M) \in (Schur) \iff \mathcal{F}(K) \in (Schur), \forall K \subset M \text{ compact.}$

If *M* is compact:



Therefore for general *M*:

$$\mathcal{F}(M) \in (ext{Schur}) \iff L^1
ot \hookrightarrow \mathcal{F}(M) \iff \left[S \subset \mathbb{R}, \ \lambda(S) > 0 \implies S \ \underset{bi-Lip}{\not \leftrightarrow} M
ight]$$

Introduction 0000000	From Kalton's Lemma to tightness	

2. On weak sequential completeness

Definition

A Banach space X is *weakly sequentially complete* if every weakly Cauchy sequence in X is actually weakly convergent.

Examples:

- (Schur) \implies (w.s.c.)
- (Reflexivity) \implies (w.s.c.)
- *L*¹ is w.s.c. (Dunford Pettis theorem)
- c₀ is not w.s.c. (e.g. considering the summing basis)

<u>**Remark:**</u> Thanks to [Godefroy – Kalton, 2003], c_0 is isometric to a subspace of $\mathcal{F}(c_0)$, and therefore $\mathcal{F}(c_0)$ is not w.s.c.

Introduction 0000000	From Kalton's Lemma to tightness	Some consequences 000●	

Corollary (Aliaga – Noûs – Procházka – P., 2021)

 $\mathcal{F}(M)$ is w.s.c. $\iff \mathcal{F}(K)$ is w.s.c., $\forall K \subset M$ compact.

- [Cuth Doucha Wojtaszczyk, 2016]: F([0,1]ⁿ) → C¹([0,1]ⁿ)* and so it is w.s.c. by a result of [Bourgain, 1983].
- [Kochanek Pernecká, 2018]: If K is a compact subset of a superreflexive space S, then F(K) is w.s.c.

Consequences:

- $\mathcal{F}(S)$ is w.s.c. for every superreflexive space S.
- For every $p \in (1,\infty)$, $\mathcal{F}(\ell_p)
 ot\simeq \mathcal{F}(c_0)$.

Introduction 00000000	From Kalton's Lemma to tightness	Some consequences	Open questions ●○○

Finitely supported elements

2 From Kalton's Lemma to tightness

③ Some consequences

Open questions

Questions 1: Find a characterization (in terms of properties of M) of those Lipschitz free spaces $\mathcal{F}(M)$ which have:

- A quantitative version of the Schur property;
- The Dunford-Pettis property.

• ...

Remark: The Dunford-Pettis property is also "compactly determined" in free spaces, but careful with the statement: $\mathcal{F}(M)$ has the (DPP) if and only if for every compact $K \subset M$ there is a subset $B \subset M$ such that $K \subset B$ and $\mathcal{F}(B)$ has the (DPP).

Question 2: Is $\mathcal{F}(\ell_1)$ w.s.c.? Is it true that $c_0 \hookrightarrow \mathcal{F}(\ell_1)$?

Question 3: Find a characterization of weakly (pre)compact subsets of $\mathcal{F}(M)$.

Recall that for a bounded $W \subset \mathcal{F}(M)$:

W is weakly precompact \implies *W* is tight \iff *W* has Kalton's property. But the converse is trivially false: if *M* is compact then any $W \subset \mathcal{F}(M)$ (e.g. $W = B_{\mathcal{F}(M)}$) is tight!

To be continued...

	Introduction 0000000	Finitely supported elements	From Kalton's Lemma to tightness	Some conseque
--	-------------------------	-----------------------------	----------------------------------	---------------

Muchas gracias por su atención!