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LAMA
Lipschitz-free operators?

Ongoing work...

Joint with: [1a] [1b] Arafat Abbar (Marne-la-Vallée) and Clément Coine (Caen);
[2] Luis Garcia-Lirola (Zaragoza) and Antonin Prochazka (Besangon)

Let M and N be two pointed metric spaces with basepoints 0y € M and Oy € N.
Let f: M — N be a Lipschitz map such that f(0y) = Op.
Then there exists:

® two (unique) Banach spaces F(M) and F(N) together with isometries
oyt M — F(M) and 6y : N — F(N) (ranges are linearly dense)

© a linear bounded operator f: F(M) — F(N) with ||F]| = Lip(f),

such that the following diagram commutes:

M—" o

éMi iéN That is FozSM:éNof.
F(M) —— F(N)
f

Terminology: We call fa Lipschitz-free operator or simply a Lipschitz operator.
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“Program’:

Characterise the (linear) properties of f in terms of the (metric) properties of f.
In this talk, we will talk about

® some dynamical properties (transitivity, hypercyclicity, etc.)

® some compactness properties

® injectivity

May be compared with a “more classical” research program in Lipschitz-free spaces
theory:

Characterise the (linear) properties of F(M) in terms of the (metric) properties of M.
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A short introduction to Lipschitz-free spaces

© A short introduction to Lipschitz-free spaces
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A short introduction to Lipschitz-free spaces

One way, among others, to define the Lipschitz free spaces over M.

Let (M, d) be a metric space with a distinguished point 0 € M.
Let X be a (real) Banach space.

We let
Lipg(M, X) = {f : M — X Lipschitz | f(0) = 0}

When equipped with the norm

)

L) — sap ) = 0
Ifll. = Lip(f) P )

it is a Banach space.
Notation: Lipg(M) := Lipy(M,R)

Then we consider the evaluation functional §(x) : Lipg(M) — R defined by
(6(x), fy = f(x), for every f € Lipy(M).

Definition

The Lipschitz-free space over M is the following subspace of Lipy(M)*:

F(M) :=spanl'l {5(x) | x € M}.
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

The fundamental extension property

Proposition (Fundamental extension property)

For every Banach space X, for every f € Lipy(M, X), the unique linear operator
f: F(M) — X defined on spané(M) by

?( En a,—(5(x,-)> = En a,—f(x,-) e X ] i\/
i=1 i=1 M _
f

is continuous with ||f|| = Lip(f). F(M)

.

Consequences:
® Lipg(M, X) = L(F(M), X)
® F(M)* = Lipg(M)

Remarks:
® If 0 € N C M, then F(N) =span{d(x) | x € N} C F(M).
© M will always be complete (F(M) = F(M)).
© A change of the base point in M does not affect the isometric structure of F(M).
© There is a notion of support for elements v € F(M): S =supp(y) CM <= S
is the smallest closed subset of M such that v € F(S).
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A short introduction to Lipschitz-free spaces
... and some important features.

Corollary (Linearisation property)

7 (F(Opm) = Op)

N
lé,\/ n n
?(Z a;5M(Xj)) = Z aiéN(f(Xf))
i=1 i=1

Remark:
The dual operator of f : F(M) — F(N) can be naturally identified with a composition
(by f) operator between the Lipschitz spaces Lipg(/N) and Lipg(M).

Indeed, if we let Cr : g € Lipg(N) — g o f € Lipg(M) then one has:

((F)"(8),60x)) = (&, F(6(x))) = (g, 5(F(x))) = g o F(x) = (Cr(g), 5(x))-
Examples:
o (M,d)=(N,|-]). T:68(n) € F(N) — >"; e € £1(N) is a surjective isometry.

© M= ([0,1],]-]). T:4(t) € F([0,1]) — 1o 4 € L1([0,1]) is a surjective isometry.
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A short introduction to Lipschitz-free spaces

How the properties of f and f are related?

M—f N

[s [s

F(M) —— F(N)

® f is bi-Lipschitz if and only if f is a linear into isomorphism (i.e. linear
embedding).

® f is a Lipschitz isomorphism (bi-Lipschitz and surjective) if and only if fisa
linear isomorphism.

® f has dense range if and only if f has dense range.

® fis a Lipschitz retraction if and only if 7 is a linear projection.

8/25



Dynamical properties

® Dynamical properties
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness

Let f : M — M and x € M. The orbit of x under f is defined by
Orb(x,f) :={f"x: ne NU{0}}.

Definition

We will say that:
® f is hypercyclic if there exists x € M such that Orb(x, ) = M.

® f is topologically transitive if, for each pair of nonempty open sets U, V of M,
there exists n € NU {0} such that f"(U) NV # 0.

® |f M has no isolated point then any hypercyclic map is topologically transitive.

Proof. Orb(x,f) =M = 3Im >0, f"(x) € U.
Orb(x, f) \ {x, f(x), ..., f7(x)} is still dense in M.
= 3n > 0 such that f"(f™(x)) = f"M(x) € V.
= fI(U)NV #0

® Conversely, if M is a separable complete space then a topologically transitive map
is hypercyclic (Birkhoff transitivity theorem).

A classical proof uses the Baire category theorem to prove that the set of points in M which have

dense orbit is dense Gg-set.
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness

We will also consider the next definitions for a linear D.S. (X, T):

Definition

A bounded operator T : X — X is cyclic if there exists a vector x € X such that
span Orb(x, f) is dense in X.

Clearly:
Hypercyclicity = Cyclicity.

Remark: These notions are linked to the invariant subspace problem:
“Does every bounded operator T on X admits a non-trivial invariant closed
subspace?” (Open in the reflexive case)

Notice that:

® T does not have any invariant closed subspace <= every x € X \ {0} is a
cyclic vector.

® T does not have any invariant closed subset <= every x € X \ {0} is a
hypercyclic vector.

11/25



Dynamical properties

Some observations from [1a]:

For every n € N, fn = (f)".
© For every x € M, Orb(d(x), f) = §(Orb(x, f)).

® x is a hypercyclic element for f <= §(x) is a cyclic vector for f.

e If v is a hypercyclic vector for f : F(M) — F(M), then v must be infinitely
supported (i.e. v ¢ spand(M)).

® If Per(f) of f is dense in M, then Per(¥) is dense in F(M).

We recall that x is a periodic point of f if there exists n € N such that f"(x) = x.
(related to Chaos in the sense of Devaney).

® If f:[a,b] — [a, b] is Lipschitz and topologically transitive (i.e. hypercyclic), with
a fixed point ¢ € [a, b], then f is hypercyclic.

In fact,  is weakly mixing (and it might even be mixing).
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Dynamical properties

A map f : M — M is said to be

® (topologically) weakly mixing if f x f is topologically transitive on M x M, that
is, for every nonempty open sets Uy, Ua, Vi, Vo of M, there exists n € NU {0}
such that f"(U1) N V4 # 0 and f"(Ux) N Vo # 0;

® (topologically) mixing if for each pair of nonempty open sets U, V of M there
exists N € NU {0} such that for every n > N, f"(U) NV # 0.

Back on M pointed metric space and f : M — M is Lipschitz with f(0) = 0.

[M. Murillo-Arcila and A. Peris, (2015)]: As a consequence of a more general
theorem, they obtain:

f mixing / weakly mixing = l?mixing / weakly mixing,

Remark : Both reverse implications are false : Even on [a, b], there exists f non
transitive such that f is mixing.
(but £ is transitive...)

What else?

Is it possible to build a Lipschitz operator with no non-trivial invariant subspace? I
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© Compactness
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

Results from the literature

A bounded operator T : X — Y between Banach spaces is (weakly) compact if
T(Bx), is relatively (weakly) compact in Y.

Theorem (Jiménez-Vargas and Villegas-Vallecillos; 2013)

Let M be bounded and separable.

Let f : M — M be a Lipschitz map vanishing at Q.

Then the composition operator Cr : g € Lipg(M) — g o f € Lipg(M) is compact if
and only if

(i) f(M) is totally bounded in M.

(if) f is uniformly locally flat, that is, for each € > 0, there exists § > 0 such that
d(f(x),f(y)) < ed(x, y) whenever d(x,y) <.

.

Remarks:
e By Schauder’s theorem, the same characterization holds for 7 : F(M) = F(M).
® The very same result holds for Lipschitz maps f : M — N.

® The proof does not use Lipschitz-free spaces at all...

[A. Jiménez-Vargas, J. M. Sepulcre and M. Villegas-Vallecillos; 2014]: The case
wheﬂ N =Y is a Banach space is considered, and a characterisation is given in terms

of “f(Molecules) is relatively compact”.
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

Proposition (M. G. Cabrera-Padilla, and A. Jiménez-Vargas; 2016)

Let M, N be pointed metric spaces and let f : M — N be a base point-preserving
Lipschitz mapping. Then f : F(M) — F(N) is (weakly) compact if and only if

{5(f(X)) —3(f(y))
d(x,y)

is relatively (weakly) compact in F(N).

\X#yGM}

Proof. “ =" Let M = {d(x,y)"1(6(x) — 6(y)) | x # y € M}. Notice that

{6(f(X)) —3(f(y))
d(x,y)

Since M C Br(uy, if fis compact then ?(M) must be relatively compact.

|x¢yeM}:F(M),

" <= " Hahn-Banach separation theorem: Bx(y) = conv.M
Now observe that

F(Brm)) C FleonvM) C conv(F(M)) C conv (?(M)) .

So, if f(/\/l) is relatively compact, then conv (f(./\/l)) is compact and therefore

f(Br(wmy) is relatively compact.
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A short introduction to Lipschitz-free spaces

Dynamical properties Compactness Injectivity

Theorem ( [1b] )

Let M, N be any pointed metric spaces.
Let f € Lipg(M, N).

Then f : F(M) — F(N) is compact if and only if the next assertions are satisfied:
(P1) For every bounded subset S C M, f(S) is totally bounded in N;
(P2) f is uniformly locally flat, that is,
d(f(x), f(y))
dioy)=0  d(x,y)

(P3) For every (xn,Yn)n C M= {(x,¥) € M X M| x # y} such that
lim d(xn,0) = lim d(yn,0) = oo, either
n— 00 n—o00

=0;

® (f(xn), f(yn))n has an accumulation point in N x N, or
d(f(xn), f(yn
o Giminf JFC0) f0n)) _
n=+eo d(xn, yn)

Proof: Quite elementary, once we have some structural results about sequences
(vn)n C F(M) such that |suppya| < 2.

In fact, most of the time we do not use norm convergence but rather weak
convergence of these kind of sequences...
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

Let M be a complete metric space. Let (yn)n C F(M) be a sequence such that
k :=sup,, | suppya| < co. If (vn)n C F(M) weakly converges to some v € F(M), then
|supp| < k and (vn)n actually converges to ~y in the norm topology.

Proof:Enough to mix a deep result by Albiac and Kalton (2009), and the fact that
{y € F(M) : |suppy| < k} is weakly closed ([1a]).

[1b]: New more elementary proof by induction on k.

Theorem ( [1b] )

Let M, N be complete pointed metric spaces, and let f : M — N be a base
point-preserving Lipschitz mapping. The the next conditions are equivalent

of: F(M) — F(N) is compact;
e f : F(M) — F(N) is weakly compact;

Proof: f compact <> f(/\/l) rel. compact
<= ?(M) rel. weakly seq. compact
<= F(M) rel. weakly compact (Eberlein-Smulian theorem)
= ?Weakly compact
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

Theorem ( [1b] )

Let M, N be complete pointed metric spaces, and let f : M — N be a base
point-preserving Lipschitz mapping. The the next conditions are equivalent

o f: F(M) — F(N) is compact;
© f: F(M) — F(N) is weakly compact;
© Cr : Lipg(N) — Lipg(M) is compact;

0 Cr : Lipg(N) — Lipg(M) is weakly compact;

Proof: (1) <= (3) follows from Schauder’s theorem
(2) < (4) follows from Gantmacher's theorem

Remark: This generalizes a result due to A. Jiménez-Vargas (2015) who proved
(3) <= (4) when M is a compact metric space such that lipg(M) is a norming
subspace of Lipy(M) (for F(M)), where lipg(M) is the subspace of all uniformly
locally flat Lipschitz functions M — R.

[Aliaga-Gartland-Petitjean-Prochazka, 2021]: For compact M
lipg(M) is norming <= F(M) = lipg(M)* <= M is purely l-unrectifiable,

where M plu means that it contains no curve fragment (v: K — M bi-Lipschitz
embedding with K C R compact with A(K) > 0).
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O Injectivity
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Injectivity

One implication is clear: Assume that f is not injective.
There exists x # y such that f(x) = f(y).

This implies that: (7, 8(x)) = (f,8(y)),

showing that f is not injective.

Therefore, ?injective — f injective, and it remains one implication to study:

f injective —> ?injective?

Some answers ([2]):

® Not true in general, e.g., there exists f : [0,1] — [0, 1] which is injective but fis
not injective.

® There are some sufficient conditions on f which imply that fis injective:
f biLipschitz, f locally bi-Lipschitz + a non returning condition at every x
(3r, p > 0 such that f|g(,,, is bi-Lipschitz and f~1(B(f(x), p)) C B(x,r)),
and some others...

® For some metric spaces M, every Lipschitz map f : M — N (for any N) admits
an injective linearization. We will say that M is Lip-lin injective.
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Injectivity

There exists f : [0,1] — [0, 1] which is injective but £ : F([0,1]) — F([0, 1]) is not
injective.

Remember that T: §(t) € F([0,1]) — 1o 4 € L1([0,1]) is a surjective isometry.

f
F([0,1]) —— F([0,1]) For every ¢ € L1([0,1]) we have
[ I

L1([0.1)) Tf} L1([0.1)) Pr(p) =poft.

Let C C [0, 1] be closed, totally disconnected such that A(C) € (0,1), min C = 0 and
max C =1 (e.g. “fat Cantor set”).
We define f: ([0,1],]-]) — ([0,1],] - |) as

F(x) = A([0, 4]\ C) = /O 1o c(t)dt.

Then f is 1-Lipschitz, non-decreasing, f(0) =0 and (1) =1 — X(C) > 0.

Moreover f is injective: If x < y, there exist a < b in (x,y) such that [a, 5] N C = (.
Thus f(y) — f(x) = A([x,y] \ C) > b—a > 0. So f is injective.

Finally, a simple integration by substitution gives

)\(f(C)):/f(C) ldt:/Cf’(x)dx:/Cl[o’l]\c(x)dx:O.

Therefore 0 # 1c € L1[0,1] but ®¢(1c) =1cof 1= lf(cy =0 € L1]0,1]. O
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Injectivity

Why is the example not simpler? (f being injective)
® Clear: If vy € ker(?) then v & span6(M).

(o)
® But also v # Z and(xn) where (ap) € ¢1 and (x,) pairwise-different.
n=1
(In our counterexample « can be expressed as v = §(1) — >, 6(xn) — 6(yn) where
lim y, —x, =0 fast enough).

® The choice of f cannot be much simpler because of the sufficient conditions
implying that f is injective.

® The choice of M cannot be much simpler, e.g., if M is uniformly discrete or if M
is compact with H!(M) = 0 then M is Lip-lin injective.

Remarks: The above construction can be “adapted” in order to show that:
® If M C R such that A(M) > 0, then M is not Lip-lin injective;
© If M be a metric space which is not plu, then M is not Lip-lin injective;
© Being compact, plu and totally disconnected is not sufficient to be Lip-lin
injective;

© There exists a countable, discrete, complete M which is not Lip-lin injective.
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A short introduction to Lipschitz-free spaces Dynamical properties Compactness Injectivity

To conclude, an interesting property of an injective i it preserves supports”.

Proposition ( [2] )

Let f € Lipg(M, N). Then, for any v € F(M),

supp (F(7)) C f (supp(7))-

The inclusion is strict whenever f is non-injective: if v # 0 € F(M) is such that

f('y) = 0, then supp f(v) = supp0 = 0 while f(supp(v)) # 0.

If M is bounded and f € Lipg(M, N) then fis injective if and only if f preserves
supports, that is, supp(f(v)) = f(supp ).
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Injectivity

[1a]: On the dynamics of Lipschitz operators,
with Arafat Abbar and Clément Coine, Integral Equations Operator Theory 93 (2021),
no. 4, Paper No. 45, 27 pp.

[1b6]: Compact and weakly compact Lipschitz operators,
with Arafat Abbar and Clément Coine, preprint (2021), arXiv:2110.03231.

[2]: Lipschitz operators which preserves injectivity,
with Luis Garcia-Lirola and Antonin Prochazka, to appear (soon?) on arXiv.

Thank you for your attention!
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