Some remarks on the dynamics of Lipschitz operators

Colin PETITJEAN

Journées du GDR AFHP 2020

Ongoing work, joint with...

Motivation

Arafat Abbar

Clément Coine

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Motivation

e First observations

3 The hypercyclicity criterion

O The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f: M \to N$ be a Lipschitz map.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

LAWA	Wotivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

- Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,
- **e** A linear bounded operator $\hat{f} \colon \mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\hat{f}\| = Lip(f)$,

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

e A linear bounded operator $\hat{f} \colon \mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\hat{f}\| = Lip(f)$,

such that the following diagram commutes:

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

e A linear bounded operator \widehat{f} : $\mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\widehat{f}\| = Lip(f)$,

such that the following diagram commutes:

$$\begin{array}{c|c} M & \stackrel{f}{\longrightarrow} & N \\ & & & \downarrow \\ \delta_{M} & & & \downarrow \\ \delta_{N} & & & \downarrow \\ \mathcal{F}(M) & \stackrel{f}{\longrightarrow} & \mathcal{F}(N) \end{array}$$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

• A linear bounded operator $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\hat{f}\| = Lip(f)$,

such that the following diagram commutes:

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

• A linear bounded operator $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\hat{f}\| = Lip(f)$,

such that the following diagram commutes:

Terminology: We refer to \hat{f} as a *Lipschitz operator*.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let M and N be two metric spaces. Let $f\colon M\to N$ be a Lipschitz map. Then, there exists

• Two Banach spaces $\mathcal{F}(M)$ and $\mathcal{F}(N)$ together with isometries $\delta_M : M \to \mathcal{F}(M)$ and $\delta_N : N \to \mathcal{F}(N)$,

• A linear bounded operator $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ with $\|\hat{f}\| = Lip(f)$, use that the following diagram commutes:

such that the following diagram commutes:

Terminology: We refer to \hat{f} as a *Lipschitz operator*.

"Program":

Characterise the (linear) properties of \hat{f} in (metric) terms of the properties of f.

ercyclicity criterion The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and $T : X \rightarrow X$ is a bounded linear operator.

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and $T : X \to X$ is a bounded linear operator.

Why is it interesting?

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and $T : X \to X$ is a bounded linear operator.

Why is it interesting?

1 A link between topological dynamical systems and linear dynamical systems.

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and $T : X \to X$ is a bounded linear operator.

Why is it interesting?

- A link between topological dynamical systems and linear dynamical systems.
- 2 A new family of hypercyclic operators.

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space and $f : M \to M$ is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and $T : X \to X$ is a bounded linear operator.

Why is it interesting?

- A link between topological dynamical systems and linear dynamical systems.
- ❷ A new family of hypercyclic operators.
- One advantage: Some definitions make sense for non-linear maps.

 $\operatorname{Orb}(x,f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

 $\mathrm{Orb}(x,f):=\{f^nx:\ n\in\mathbb{N}\cup\{0\}\}.$

Definition

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

 $\mathrm{Orb}(x,f):=\{f^nx:\ n\in\mathbb{N}\cup\{0\}\}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If M has no isolated point then any hypercyclic map is topologically transitive.

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If *M* has no isolated point then any hypercyclic map is topologically transitive. **Proof.** $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If M has no isolated point then any hypercyclic map is topologically transitive.

Proof. $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$ $\operatorname{Orb}(x, f) \setminus \{x, f(x), \dots, f^m(x)\}$ is still dense in M.

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If M has no isolated point then any hypercyclic map is topologically transitive.

Proof. $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$ $\operatorname{Orb}(x, f) \setminus \{x, f(x), \dots, f^m(x)\}$ is still dense in M. $\implies \exists n \ge 0$ such that $f^n(f^m(x)) = f^{n+m}(x) \in V.$

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If M has no isolated point then any hypercyclic map is topologically transitive.

Proof. $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$ $\operatorname{Orb}(x, f) \setminus \{x, f(x), \dots, f^m(x)\}$ is still dense in M. $\implies \exists n \ge 0$ such that $f^n(f^m(x)) = f^{n+m}(x) \in V.$ $\implies f^n(U) \cap V \neq \emptyset$

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If M has no isolated point then any hypercyclic map is topologically transitive.

Proof. $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$ $\operatorname{Orb}(x, f) \setminus \{x, f(x), \dots, f^m(x)\}$ is still dense in M. $\implies \exists n \ge 0$ such that $f^n(f^m(x)) = f^{n+m}(x) \in V.$ $\implies f^n(U) \cap V \neq \emptyset$

• Conversely, if *M* is a separable complete space then a topologically transitive map is hypercyclic (Birkhoff transitivity theorem).

 $\operatorname{Orb}(x, f) := \{ f^n x : n \in \mathbb{N} \cup \{0\} \}.$

Definition

Motivation

We will say that f is hypercyclic if there exists $x \in M$ such that $\overline{\operatorname{Orb}(x, f)} = M$.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U, V of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U) \cap V \neq \emptyset$.

• If *M* has no isolated point then any hypercyclic map is topologically transitive.

Proof. $\overline{\operatorname{Orb}(x, f)} = M \implies \exists m \ge 0, f^m(x) \in U.$ $\operatorname{Orb}(x, f) \setminus \{x, f(x), \dots, f^m(x)\}$ is still dense in M. $\implies \exists n \ge 0$ such that $f^n(f^m(x)) = f^{n+m}(x) \in V.$ $\implies f^n(U) \cap V \neq \emptyset$

• Conversely, if *M* is a separable complete space then a topologically transitive map is hypercyclic (Birkhoff transitivity theorem).

A classical proof uses the Baire category theorem to prove that the set of points in M which have dense orbit is dense $G_{\delta}\text{-set}.$

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

```
Orb(\mathbb{K}x, T) := \{\lambda T^n x : \lambda \in \mathbb{K}, n \in \mathbb{N} \cup \{0\}\} \text{ is dense in } X.
```

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

$$Orb(\mathbb{K}x, T) := \{\lambda T^n x : \lambda \in \mathbb{K}, n \in \mathbb{N} \cup \{0\}\} \text{ is dense in } X.$$

• T is cyclic if there exists a vector $x \in X$ such that span Orb(x, f) is dense in X.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

 $Orb(\mathbb{K} x, T) := \{ \lambda T^n x : \lambda \in \mathbb{K}, n \in \mathbb{N} \cup \{0\} \} \text{ is dense in } X.$

• T is cyclic if there exists a vector $x \in X$ such that span Orb(x, f) is dense in X.

Clearly, the following chain of implications holds for (X, T):

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

 $Orb(\mathbb{K}x, T) := \{\lambda T^n x : \lambda \in \mathbb{K}, n \in \mathbb{N} \cup \{0\}\} \text{ is dense in } X.$

• T is cyclic if there exists a vector $x \in X$ such that span Orb(x, f) is dense in X.

Clearly, the following chain of implications holds for (X, T):

Hypercyclicity \Rightarrow Supercyclicity \Rightarrow Cyclicity.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interval

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

$$\operatorname{Orb}(\mathbb{K}\,\mathsf{x},\,\mathcal{T}):=\{\lambda\,\mathcal{T}^n\mathsf{x}:\,\lambda\in\mathbb{K},\,n\in\mathbb{N}\cup\{0\}\}\ ext{is dense in }X.$$

• T is cyclic if there exists a vector $x \in X$ such that span Orb(x, f) is dense in X.

Clearly, the following chain of implications holds for (X, T):

```
\mathsf{Hypercyclicity} \ \Rightarrow \ \mathsf{Supercyclicity} \ \Rightarrow \ \mathsf{Cyclicity}.
```

Question

If $f: M \to M$ has a given dynamical property, what can be said about $\widehat{f}: \mathcal{F}(M) \to \mathcal{F}(M)$?
LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interv

We will also consider the next definitions for a **linear** D.S. (X, T):

Definition

• T is supercyclic whenever there exists a vector $x \in X$ such that

```
Orb(\mathbb{K}x, T) := \{\lambda T^n x : \lambda \in \mathbb{K}, n \in \mathbb{N} \cup \{0\}\} \text{ is dense in } X.
```

• T is cyclic if there exists a vector $x \in X$ such that span Orb(x, f) is dense in X.

Clearly, the following chain of implications holds for (X, T):

```
Hypercyclicity \Rightarrow Supercyclicity \Rightarrow Cyclicity.
```

Question

If $f: M \to M$ has a given dynamical property, what can be said about $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(M)$?

Question

Conversely, if $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ has a given dynamical property, what can be said about $f : M \to M$?

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Lipschitz free s	spaces			

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Lipschitz fre	e spaces			

Let X be a real Banach space.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Lipschitz free	spaces			

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Linschitz fr	e spaces			

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

$$||f||_L = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_X}{d(x, y)},$$

it is a Banach space.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Linechitz fre				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Linschitz fr				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

Consider the functional $\delta(x)$ defined by $\langle f, \delta(x) \rangle = f(x)$ for every $f \in \text{Lip}_0(M)$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Lincohitz fro				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

Consider the functional $\delta(x)$ defined by $\langle f, \delta(x) \rangle = f(x)$ for every $f \in \text{Lip}_0(M)$. It is readily seen that $\delta(x) \in \text{Lip}_0(M)^*$ with $\|\delta(x)\| = d(x, 0)$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Lincohitz fro				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz } | f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

Consider the functional $\delta(x)$ defined by $\langle f, \delta(x) \rangle = f(x)$ for every $f \in \text{Lip}_0(M)$. It is readily seen that $\delta(x) \in \text{Lip}_0(M)^*$ with $\|\delta(x)\| = d(x, 0)$. In fact, the map $\delta_M : x \in M \mapsto \delta(x) \in \text{Lip}_0(M)^*$ is an isometry.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
I important for				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz } | f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

Consider the functional $\delta(x)$ defined by $\langle f, \delta(x) \rangle = f(x)$ for every $f \in \text{Lip}_0(M)$. It is readily seen that $\delta(x) \in \text{Lip}_0(M)^*$ with $\|\delta(x)\| = d(x, 0)$. In fact, the map $\delta_M : x \in M \mapsto \delta(x) \in \text{Lip}_0(M)^*$ is an isometry.

Definition

The Lipschitz-free space over M is the following subspace of $Lip_0(M)^*$:

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
I to a later for				

Let X be a real Banach space.

We let

$$\operatorname{Lip}_{0}(M, X) = \{f : M \to X \text{ Lipschitz} \mid f(0) = 0\}$$

When equipped with the norm

$$||f||_{L} = Lip(f) = \sup_{x \neq y} \frac{||f(x) - f(y)||_{X}}{d(x, y)},$$

it is a Banach space.

Notation: $Lip_0(M) := Lip_0(M, \mathbb{R})$

Consider the functional $\delta(x)$ defined by $\langle f, \delta(x) \rangle = f(x)$ for every $f \in \text{Lip}_0(M)$. It is readily seen that $\delta(x) \in \text{Lip}_0(M)^*$ with $\|\delta(x)\| = d(x, 0)$. In fact, the map $\delta_M : x \in M \mapsto \delta(x) \in \text{Lip}_0(M)^*$ is an isometry.

Definition

The Lipschitz-free space over M is the following subspace of $Lip_0(M)^*$:

 $\mathcal{F}(M) := \overline{\operatorname{span}}^{\|\cdot\|} \left\{ \delta(x) \mid x \in M \right\}.$

Proposition (Fundamental extension property)

Proposition (Fundamental extension property)

For every Banach space X,

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in Lip_0(M, X)$,

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in Lip_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in Lip_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\Big(\sum_{i=1}^n a_i \delta(x_i)\Big) = \sum_{i=1}^n a_i f(x_i) \in X$$

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in Lip_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\Big(\sum_{i=1}^n a_i \delta(x_i)\Big) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

For every Banach space X, for every $f \in Lip_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\Big(\sum_{i=1}^n a_i \delta(x_i)\Big) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

$$\overline{f}\Big(\sum_{i=1}^n a_i \delta(x_i)\Big) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

Consequences:

 $M \xrightarrow{f} X$

 $\mathcal{F}(M)$

For every Banach space X, for every $f \in \operatorname{Lip}_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\Big(\sum_{i=1}^n a_i \delta(x_i)\Big) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

Consequences:

•
$$\operatorname{Lip}_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$$

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in \text{Lip}_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\left(\sum_{i=1}^n a_i \delta(x_i)\right) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

Consequences:

- $\operatorname{Lip}_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$
- $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$

Proposition (Fundamental extension property)

For every Banach space X, for every $f \in Lip_0(M, X)$, the unique linear operator $\overline{f} : \mathcal{F}(M) \to X$ defined on span $\delta(M)$ by

$$\overline{f}\left(\sum_{i=1}^n a_i \delta(x_i)\right) = \sum_{i=1}^n a_i f(x_i) \in X$$

is continuous with $\|\overline{f}\| = Lip(f)$.

Consequences:

•
$$\operatorname{Lip}_{0}(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$$

•
$$\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$$

Corollary (Linearisation property)

$$M \xrightarrow{f} N$$

$$\delta_{M} \downarrow \qquad \qquad \downarrow \delta_{N}$$

$$\mathcal{F}(M) \xrightarrow{f} \mathcal{F}(N)$$

$$(f(0_M)=0_N)$$

$$\widehat{f}\Big(\sum_{i=1}^{n} a_i \delta_M(x_i)\Big) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
and some i	important features			

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
and som	e important features.			

• If
$$0 \in N \subset M$$
, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.

- If $0 \in N \subset M$, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- \bigcirc *M* will always be complete.

- If $0 \in N \subset M$, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- \bigcirc *M* will always be complete.
- **3** A change of the base point in M does not the isometric structure of $\mathcal{F}(M)$.

- If $0 \in N \subset M$, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- M will always be complete.
- **3** A change of the base point in M does not the isometric structure of $\mathcal{F}(M)$.
- **3** We always assume that $f: M \to M$ has a fixed point (f(0) = 0).

- If $0 \in N \subset M$, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- M will always be complete.
- **e** A change of the base point in M does not the isometric structure of $\mathcal{F}(M)$.
- **3** We always assume that $f: M \to M$ has a fixed point (f(0) = 0).

Examples

• $(M, d) = (\mathbb{N}, |\cdot|)$. The linear operator satisfying

$$\mathcal{T} \colon \delta(n) \in \mathcal{F}(\mathbb{N}) \mapsto \sum_{i=1}^{n} e_i \in \ell_1(\mathbb{N})$$

is an onto linear isometry.

- If $0 \in N \subset M$, then $\mathcal{F}(N) = \overline{\operatorname{span}}\{\delta(x) \mid x \in N\} \subset \mathcal{F}(M)$.
- ❷ M will always be complete.
- **e** A change of the base point in M does not the isometric structure of $\mathcal{F}(M)$.
- We always assume that $f: M \to M$ has a fixed point (f(0) = 0).

Examples

• $(M, d) = (\mathbb{N}, |\cdot|)$. The linear operator satisfying

$$\mathcal{T} \colon \delta(n) \in \mathcal{F}(\mathbb{N}) \mapsto \sum_{i=1}^{n} e_i \in \ell_1(\mathbb{N})$$

is an onto linear isometry.

 Θ $M = ([0, 1], |\cdot|)$. The linear operator

$$T: \delta(t) \in \mathcal{F}([0,1]) \mapsto \mathbb{1}_{[0,t]} \in L^1([0,1])$$

is an onto linear isometry.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

LAMA Motivatio

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric d described below.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interval

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

That is, for every $n, m \in \mathbb{N}$, $d(n, 0) = d_n > 0$ and $d(n, m) = d_n + d_m$.

LAMA	Motivation

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

That is, for every $n, m \in \mathbb{N}$, $d(n, 0) = d_n > 0$ and $d(n, m) = d_n + d_m$.

Proposition

The linear map $\Phi : \mathcal{F}(M) \to \ell_1(\mathbb{N})$ given by

$$\Phi(\delta(n)) = d(n,0)e_n = d_n e_n$$

is a linear surjective isometry.

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

That is, for every $n, m \in \mathbb{N}$, $d(n, 0) = d_n > 0$ and $d(n, m) = d_n + d_m$.

Proposition

The linear map $\Phi : \mathcal{F}(M) \to \ell_1(\mathbb{N})$ given by

$$\Phi(\delta(n)) = d(n,0)e_n = d_n e_n$$

is a linear surjective isometry. In particular, any Lipschitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate a bounded operator $T : \ell_1(\mathbb{N}) \to \ell_1(\mathbb{N})$.

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

That is, for every $n, m \in \mathbb{N}$, $d(n, 0) = d_n > 0$ and $d(n, m) = d_n + d_m$.

Proposition

The linear map $\Phi : \mathcal{F}(M) \to \ell_1(\mathbb{N})$ given by

$$\Phi(\delta(n)) = d(n,0)e_n = d_n e_n$$

is a linear surjective isometry. In particular, any Lipschitz operator $\widehat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate a bounded operator $T : \ell_1(\mathbb{N}) \to \ell_1(\mathbb{N})$.

In fact,

LAMA	Motivation
------	------------

Let $M = \mathbb{N} \cup \{0\}$ be equipped with the tree metric *d* described below.

That is, for every $n, m \in \mathbb{N}$, $d(n, 0) = d_n > 0$ and $d(n, m) = d_n + d_m$.

Proposition

The linear map $\Phi : \mathcal{F}(M) \to \ell_1(\mathbb{N})$ given by

$$\Phi(\delta(n)) = d(n,0)e_n = d_n e_n$$

is a linear surjective isometry. In particular, any Lipschitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate a bounded operator $T : \ell_1(\mathbb{N}) \to \ell_1(\mathbb{N})$.

In fact,

$$Te_n = \Phi \circ \widehat{f} \circ \Phi^{-1}e_n = \frac{d_{f(n)}}{d_n}e_{f(n)}.$$
LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Motivation

e First observations

3 The hypercyclicity criterion

O The case of bounded intervals

and $f: M \to M$ such that f(0) = 0 and f(n) = n - 1 otherwise.

LAI	AN	Motivation	First observations	The hypercyclicity criterion	The case of bounded interva
	Let N	1 be	$1 \qquad 2 \qquad 3$	n. 	
	and f	:M ightarrow M su	uch that $f(0) = 0$ and	d $f(n) = n - 1$ otherwise.	
	Exam	ples			
	• \	With $d_n = \frac{1}{2^n}$, then $\mathcal{T}:\ell_{1} ightarrow\ell_{1}$ is	s such that $Te_{n+1} = 2e_n$	

Thus \hat{f} is hypercyclic (while f is not).

• With $d_n = 1$, then $T : \ell_1 \to \ell_1$ is such that $Te_{n+1} = e_n$.

LAN	IA Motivation	First observations	The hypercyclicity criterion	The case of bounded interva
	Let <i>M</i> be	$1 \qquad 2 \qquad 3$	n	
	and $f:M o M$ su	where $f(0) = 0$ and	f(n) = n - 1 otherwise.	
	Examples			
	• With $d_n = \frac{1}{2^n}$, then $\mathcal{T}:\ell_{f 1} o\ell_{f 1}$ is	s such that $Te_{n+1} = 2e_n$	
	Thus \widehat{f} is hyp	ercyclic (while f is n	ot).	

• With $d_n = 1$, then $T : \ell_1 \to \ell_1$ is such that $Te_{n+1} = e_n$. Thus \hat{f} is not hypercyclic, but it is supercyclic.

LAMA Motiv	ation First observations	The hypercyclicity criterion	The case of bounded interval
Let <i>M</i> be	1 2	3 n	
	d_1	d_3 d_n d_n	

and $f: M \to M$ such that f(0) = 0 and f(n) = n - 1 otherwise.

Examples

• With
$$d_n = rac{1}{2^n}$$
, then $T: \ell_1 o \ell_1$ is such that $Te_{n+1} = 2e_n$

Thus \hat{f} is hypercyclic (while f is not).

Proposition

•
$$\widehat{f}$$
 is hypercyclic $\iff \liminf_{n \to +\infty} d(n, 0) = 0.$

LAMA Motivation	First observations	The hypercyclicity criterion	The case of bounded interval
Let <i>M</i> be		3 n	
		3 ·····	

and $f: M \to M$ such that f(0) = 0 and f(n) = n - 1 otherwise.

Examples

• With $d_n = \frac{1}{2^n}$, then $T : \ell_1 \to \ell_1$ is such that $Te_{n+1} = 2e_n$

Thus \hat{f} is hypercyclic (while f is not).

Proposition

•
$$\hat{f}$$
 is hypercyclic $\iff \liminf_{n \to +\infty} d(n,0) = 0.$

e If M is uniformly discrete ($\exists \theta > 0$, $\forall x \neq y$, $d(x, y) \geq \theta$) and bounded (diam(M) = sup_{x≠y} $d(x, y) < \infty$), then there is no hypercyclic Lipschitz operator.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Proposition

A Lipschitz map $f: M \to N$ has dense range if and only if $\widehat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Proposition A Lipschitz map $f : M \to N$ has dense range if and only if $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Remark: A cyclic operator does not necessarily have a dense range : The forward shift operator on $\ell_1(\mathbb{N})$ ($Te_n = e_{n+1}$) is cyclic but its image is not dense in $\ell_1(\mathbb{N})$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Proposition A Lipschitz map $f : M \to N$ has dense range if and only if $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Remark: A cyclic operator does not necessarily have a dense range : The forward shift operator on $\ell_1(\mathbb{N})$ ($Te_n = e_{n+1}$) is cyclic but its image is not dense in $\ell_1(\mathbb{N})$. So the same remark holds for Lipschitz operators (take f(n) = n + 1 in the previous example).

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Proposition A Lipschitz map $f : M \to N$ has dense range if and only if $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Remark: A cyclic operator does not necessarily have a dense range : The forward shift operator on $\ell_1(\mathbb{N})$ ($Te_n = e_{n+1}$) is cyclic but its image is not dense in $\ell_1(\mathbb{N})$. So the same remark holds for Lipschitz operators (take f(n) = n + 1 in the previous example).

Proposition

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.
" \Longrightarrow "

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.
" \Longrightarrow "

f(M) is dense in N

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.
" \Longrightarrow "

f(M) is dense in $N \implies \delta(f(M))$ is dense in $\delta(N)$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.
" \Longrightarrow "

$$f(M)$$
 is dense in $N \implies \delta(f(M))$ is dense in $\delta(N)$
 $\implies \text{ span } \delta(f(M))$ is dense in span $\delta(N)$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\widehat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.
" \Longrightarrow "

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" ⇐ "

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" \Leftarrow " If there exists $y \in N \setminus \overline{f(M)}$, then $d(y, \overline{f(M)}) > 0$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\text{span } \delta(M)) = \text{span } \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" \Leftarrow " If there exists $y \in N \setminus \overline{f(M)}$, then $d(y, \overline{f(M)}) > 0$. Construct $g \in \text{Lip}_0(N)$ such that $g(\overline{f(M)}) = \{0\}$ while g(y) = 1, and then notice that

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" \Leftarrow " If there exists $y \in N \setminus \overline{f(M)}$, then $d(y, \overline{f(M)}) > 0$. Construct $g \in \text{Lip}_0(N)$ such that $g(\overline{f(M)}) = \{0\}$ while g(y) = 1, and then notice that $\operatorname{dist}\left(\delta(y), \overline{\widehat{f}(\mathcal{F}(M))}\right)$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" \Leftarrow " If there exists $y \in N \setminus \overline{f(M)}$, then $d(y, \overline{f(M)}) > 0$. Construct $g \in \text{Lip}_0(N)$ such that $g(\overline{f(M)}) = \{0\}$ while g(y) = 1, and then notice that

$$\operatorname{dist}\left(\delta(y),\overline{\widehat{f}(\mathcal{F}(M))}\right) \geq \frac{1}{\|g\|_{L}}\langle g,\delta(y)\rangle$$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

A Lipschitz map $f: M \to N$ has dense range if and only if $\hat{f}: \mathcal{F}(M) \to \mathcal{F}(N)$ has dense range.

Proof. Recall that
$$\widehat{f}\left(\sum_{i=1}^{n} a_i \delta_M(x_i)\right) = \sum_{i=1}^{n} a_i \delta_N(f(x_i))$$
, so that $\widehat{f}(\operatorname{span} \delta(M)) = \operatorname{span} \delta(f(M))$.

$$\begin{array}{rcl} f(M) \text{ is dense in } N & \Longrightarrow & \delta(f(M)) \text{ is dense in } \delta(N) \\ & \Longrightarrow & \operatorname{span} \delta(f(M)) \text{ is dense in span} \delta(N) \\ & \implies & \widehat{f}(\operatorname{span} \delta(M)) \text{ is dense in } \mathcal{F}(N) \end{array}$$

" \Leftarrow " If there exists $y \in N \setminus \overline{f(M)}$, then $d(y, \overline{f(M)}) > 0$. Construct $g \in \text{Lip}_0(N)$ such that $g(\overline{f(M)}) = \{0\}$ while g(y) = 1, and then notice that

$$\operatorname{dist}\left(\delta(y), \overline{\widehat{f}(\mathcal{F}(M))}\right) \geq \frac{1}{\|g\|_{L}} \langle g, \delta(y) \rangle = \frac{1}{\|g\|_{L}} > 0.$$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

LA	MA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$ Construct a linear projection $P : \mathcal{F}(M) \to E$ such that $P \upharpoonright_{\operatorname{span}(\overline{f(M)})} = 0$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$ Construct a linear projection $P : \mathcal{F}(M) \to E$ such that $P \upharpoonright_{\overline{\operatorname{span}}\delta(\overline{f(M)})} = 0$. If $\gamma \in \mathcal{F}(M)$ then

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$ Construct a linear projection $P : \mathcal{F}(M) \to E$ such that $P \upharpoonright_{\overline{\operatorname{span}}\delta(\overline{f(M)})} = 0$. If $\gamma \in \mathcal{F}(M)$ then $P(\operatorname{span}\operatorname{Orb}(\gamma, \widehat{f})) = P(\operatorname{span}\{\gamma\}) = \mathbb{R}P(\gamma)$,

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$ Construct a linear projection $P : \mathcal{F}(M) \to E$ such that $P \upharpoonright_{\overline{\operatorname{span}\delta}(\overline{f(M)})} = 0$. If $\gamma \in \mathcal{F}(M)$ then $P(\operatorname{span}\operatorname{Orb}(\gamma, \widehat{f})) = P(\operatorname{span}\{\gamma\}) = \mathbb{R}P(\gamma)$,

which cannot be dense in E.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If a Lispchitz operator $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is cyclic, then either f(M) is dense in M or there exists $x \in M$ such that the range f(M) is dense in $M \setminus \{x\}$.

Proof. Assume there is $x_1 \neq x_2 \in M \setminus \overline{f(M)}$. Fix $E := \operatorname{span}\{x_1, x_2\}$ Construct a linear projection $P : \mathcal{F}(M) \to E$ such that $P \upharpoonright_{\overline{\operatorname{span}\delta}(\overline{f(M)})} = 0$. If $\gamma \in \mathcal{F}(M)$ then $P(\operatorname{span}\operatorname{Orb}(\gamma, \widehat{f})) = P(\operatorname{span}\{\gamma\}) = \mathbb{R}P(\gamma)$,

which cannot be dense in E.

Thus span $Orb(\gamma, \hat{f})$ cannot be dense in $\mathcal{F}(M)$.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Lemma

• For every
$$n \in \mathbb{N}$$
, $\widehat{f^n} = (\widehat{f})^n$.
lomma			
Lemma			
 For every n 	$\mathbb{N}, \ \widehat{f^n} = (\widehat{f})^n.$		

First observations

The case of bounded intervals

Lemma		
 For even 	ry $n \in \mathbb{N}$, $\widehat{f^n} = (\widehat{f})^n$.	
	â	

The hypercyclicity criterion

First observations

LAMA

Motivation

We recall that x is a periodic point of f if there exists $n \in \mathbb{N}$ such that $f^n(x) = x$, and we will denote by Per(f) the set of all periodic points of f.

The case of bounded intervals

AN	Motivation	First observations	The hypercyclicity criterion	The case of bounded int
Lem	ima			
0	For every $n \in$	$\mathbb{N}, \ \widehat{f^n} = (\widehat{f})^n.$		
0	For every $x \in$	$M, {\rm Orb}\big(\delta(x),\widehat{f}\big) =$	$\delta(\operatorname{Orb}(x,f)).$	
We we v	recall that x is will denote by	a periodic point of $\operatorname{Per}(f)$ the set of all	f if there exists $n \in \mathbb{N}$ such periodic points of f .	that $f^n(x) = x$, and
Cord	ollary			
If P	$\operatorname{er}(f)$ of f is d	ense in <i>M</i> , then Per((\hat{f}) is dense in $\mathcal{F}(M)$.	

Lem	ma			
0 0	For every $n \in$ For every $x \in$	$\mathbb{N}, \ \widehat{f^n} = (\widehat{f})^n.$ $M, \ \operatorname{Orb}(\delta(x), \widehat{f}) =$	$\delta(\operatorname{Orb}(x,f)).$	
We r we w	ecall that x is in the content of th	s a periodic point of $\operatorname{Per}(f)$ the set of all	f if there exists $n \in \mathbb{N}$ such periodic points of f .	that $f^n(x) = x$, and
Coro	llary			

Corollary

x is a hypercyclic element for $f \iff \delta(x)$ is a cyclic vector for \widehat{f} .

IN INCLIVATION		The hypercyclicity criterion	The case of bounded inter
Lemma			
1 For every $n \in$	$\mathbb{N}, \ \widehat{f^n} = (\widehat{f})^n.$		
e For every $x \in$	M , $Orb(\delta(x), \hat{f}) = \delta$	$\delta(\operatorname{Orb}(x,f)).$	J
We recall that <i>x</i> is we will denote by	a periodic point of <i>t</i> Per(<i>f</i>) the set of all	f if there exists $n \in \mathbb{N}$ such periodic points of f.	that $f^n(x) = x$, and
Corollary			
If $Per(f)$ of f is defined	ense in <i>M</i> , then Per(\hat{f}) is dense in $\mathcal{F}(M)$.	
If $Per(f)$ of f is defined	ense in <i>M</i> , then Per($\hat{f})$ is dense in $\mathcal{F}(M).$	

x is a hypercyclic element for $f \iff \delta(x)$ is a cyclic vector for \hat{f} .

Proposition

If γ is a supercyclic vector for $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$, then γ must be infinitely supported.

MA	Motivation	First observations	The hypercyclicity criterion	I he case of bounded interve
Lem	ıma			
0	For every $n \in$	\mathbb{N} , $\widehat{f^n} = (\widehat{f})^n$.		
0	For every $x \in$	$M, \operatorname{Orb}(\delta(x), \widehat{f}) = \delta$	$\delta(\operatorname{Orb}(x, f)).$	J
We we v	recall that x is will denote by	a periodic point of Per(f) the set of all	f if there exists $n \in \mathbb{N}$ such periodic points of f.	that $f^n(x) = x$, and
Cord	ollary			
If P	$\operatorname{er}(f)$ of f is d	ense in <i>M</i> , then Per(\hat{f}) is dense in $\mathcal{F}(M)$.	
_				
Cord	ollary			

x is a hypercyclic element for $f \iff \delta(x)$ is a cyclic vector for \hat{f} .

Proposition

If γ is a supercyclic vector for $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$, then γ must be infinitely supported.

Proof. Consequence of the fact that $FS_n(M) := \{\gamma \in \mathcal{F}(M) : | \operatorname{supp} \gamma| \le n \}$ is closed.

LAM	A Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Definition • f is (tope there exist		gically) mixing if for e $N\in\mathbb{N}\cup\{0\}$ such that	ach pair of nonempty open t for every $n \ge N$, $f^n(U) \cap$	sets U, V of M $V \neq \emptyset$;

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interv	/als
Defin	ition				
•	f is (topologi	ically) mixing if for e	ach pair of nonempty open	sets U.V. of M	

- *f* is (topologically) mixing if for each pair of nonempty open sets U, V of M there exists $N \in \mathbb{N} \cup \{0\}$ such that for every $n \ge N$, $f^n(U) \cap V \neq \emptyset$;
- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interva
Def	nition			
Den	nition			
 f is (topologically) mixing it 		<i>ically) mixing</i> if for e	ach pair of nonempty open	sets U, V of M
	there exists A	$I \in \mathbb{N} \cup \{0\}$ such that	It for every $n \geq N$, $f^n(U) \cap$	$V \neq \emptyset;$

- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

LAMA	Motivation	First observations	I he hypercyclicity criterion	The case of bounded inter	vals
Def	inition				
•	f is (topologi there exists N	<i>ically) mixing</i> if for e $l \in \mathbb{N} \cup \{0\}$ such that	ach pair of nonempty open s t for every $n \ge N$ $f^n(U) \cap I$	sets U, V of M $V \neq \emptyset$:	

- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals	
De	finition				
 f is (topologically) mixing if for each pair of nonempty open sets U, V of there exists N ∈ N ∪ {0} such that for every n ≥ N, fⁿ(U) ∩ V ≠ Ø; 					

- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T: X \to X$ is a bounded operator

	LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interv	vals
	Defir	nition				
 f is (topologically) mixing if for each pair of nonempty open sets U, V of M there exists N ∈ N ∪ {0} such that for every n ≥ N, fⁿ(U) ∩ V ≠ Ø; 						

- f is (topologically) weakly mixing if $f \times f$ is topologically transitive on $M \times M$, that is, for every nonempty open sets U_1, U_2, V_1, V_2 of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U_1) \cap V_1 \neq \emptyset$ and $f^n(U_2) \cap V_2 \neq \emptyset$;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T: X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded inter	vals
_					
Defi	nition				
•	f is (topologi there exists A	ically) mixing if for e $l\in\mathbb{N}\cup\{0\}$ such that	ach pair of nonempty open s t for every $n \ge N$, $f^n(U) \cap$	sets U, V of M $V \neq \emptyset$;	
•	f is (topologi	cally) weakly mixing	if $f \times f$ is topologically trans	nsitive on $M \times M$,	

- that is, for every nonempty open sets U_1, U_2, V_1, V_2 of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U_1) \cap V_1 \neq \emptyset$ and $f^n(U_2) \cap V_2 \neq \emptyset$;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T: X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$ such that $0 \in K$

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Def	inition			
•	f is (topolog	ically) mixing if for e $M \in \mathbb{N} \cup \{0\}$ such that	ach pair of nonempty open t for every $n > N$ $f^n(U) \cap$	sets U, V of M $V \neq \emptyset$

- f is (topologically) weakly mixing if $f \times f$ is topologically transitive on $M \times M$, that is, for every nonempty open sets U_1, U_2, V_1, V_2 of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U_1) \cap V_1 \neq \emptyset$ and $f^n(U_2) \cap V_2 \neq \emptyset$;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T : X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$ such that $0 \in K$ and $T \upharpoonright_{K}$ is weakly mixing (mixing, weakly mixing and chaotic, respectively),

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded inte	rvals
Def	inition				
•	f is (topolog	<i>ically) mixing</i> if for e	ach pair of nonempty open	sets U, V of M	

- there exists $N \in \mathbb{N} \cup \{0\}$ such that for every n > N, $f^n(U) \cap V \neq \emptyset$;
- f is (topologically) weakly mixing if $f \times f$ is topologically transitive on $M \times M$, that is, for every nonempty open sets U_1, U_2, V_1, V_2 of M, there exists $n \in \mathbb{N} \cup \{0\}$ such that $f^n(U_1) \cap V_1 \neq \emptyset$ and $f^n(U_2) \cap V_2 \neq \emptyset$;
- f is said Devaney chaotic if f is topologically transitive and the set of periodic points of f is dense in M.

If $T: X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$ such that $0 \in K$ and $T \upharpoonright_K$ is weakly mixing (mixing, weakly mixing and chaotic, respectively), then $T_{i_{span}K}$ is also weakly mixing (mixing, weakly mixing and chaotic, respectively).

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals
Def	nition			
•	f is (topologi there exists A	ically) mixing if for e $l\in\mathbb{N}\cup\{0\}$ such that	ach pair of nonempty open s t for every $n > N$, $f^n(U) \cap$	sets U, V of M $V \neq \emptyset$;

- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T : X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$ such that $0 \in K$ and $T \upharpoonright_{K}$ is weakly mixing (mixing, weakly mixing and chaotic, respectively), then $T \upharpoonright_{SDBNK}$ is also weakly mixing (mixing, weakly mixing and chaotic, respectively).

Since span $\delta(M) = \mathcal{F}(M)$ and $\widehat{f}(\delta(M)) \subset \delta(M)$,

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interv	vals
Defini	ition				
• f	is (topologica	lly) mixing if for ea	ach pair of nonempty open s	sets U, V of M	

- *f* is (topologically) mixing if for each pair of nonempty open sets U, V of M there exists $N \in \mathbb{N} \cup \{0\}$ such that for every $n \ge N$, $f^n(U) \cap V \neq \emptyset$;
- f is (topologically) weakly mixing if f × f is topologically transitive on M × M, that is, for every nonempty open sets U₁, U₂, V₁, V₂ of M, there exists n ∈ N ∪ {0} such that fⁿ(U₁) ∩ V₁ ≠ Ø and fⁿ(U₂) ∩ V₂ ≠ Ø;
- *f* is said *Devaney chaotic* if *f* is topologically transitive and the set of periodic points of *f* is dense in *M*.

If $T : X \to X$ is a bounded operator and K is a T-invariant set $(T(K) \subset K)$ such that $0 \in K$ and $T \upharpoonright_{K}$ is weakly mixing (mixing, weakly mixing and chaotic, respectively), then $T \upharpoonright_{\text{span}K}$ is also weakly mixing (mixing, weakly mixing and chaotic, respectively).

Since span $\delta(M) = \mathcal{F}(M)$ and $\widehat{f}(\delta(M)) \subset \delta(M)$,

Corollary (M. Murillo-Arcila and A. Peris, 2015)

If $f: M \to M$ is weakly mixing (mixing, weakly mixing and chaotic, respectively) then so is \hat{f} .

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Motivation

e First observations

The hypercyclicity criterion

O The case of bounded intervals

The hypercyclicity criterion (HC).

Motivation

The hypercyclicity criterion (HC). We will say that T satisfies the HC

The hypercyclicity criterion (HC). We will say that T satisfies the HC if there exists an increasing sequence of integers (n_k) ,

The hypercyclicity criterion (HC). We will say that T satisfies the HC if there exists an increasing sequence of integers (n_k) , two dense sets X_0 and Y_0 in X,

Motivation

The hypercyclicity criterion (HC). We will say that T satisfies the HC if there exists an increasing sequence of integers (n_k) , two dense sets X_0 and Y_0 in X, and a sequence of maps $S_{n_k}: Y_0 \to X$ such that

1 $T^{n_k}x \rightarrow 0$ for any $x \in X_0$;

Motivation

1 $T^{n_k}x \rightarrow 0$ for any $x \in X_0$;

 $\textbf{2} \ S_{n_k} x \to 0 \text{ for any } x \in Y_0;$

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $S_{n_k} x \to 0$ for any $x \in Y_0$;
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $S_{n_k} x \to 0$ for any $x \in Y_0$;
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$

Fact 1. If T satisfies the HC then T is hypercyclic.

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\mathbf{S}_{n_k} x \to \mathbf{0}$ for any $x \in Y_{\mathbf{0}};$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\mathbf{S}_{n_k} x \to \mathbf{0}$ for any $x \in Y_{\mathbf{0}};$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.
- **Fact 3.** If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\mathbf{S}_{n_k} x \to \mathbf{0}$ for any $x \in Y_{\mathbf{0}};$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

- **1** $T^{n_k} x \to 0$ for any $x \in X_0$;
- $S_{n_{\nu}} x \rightarrow 0$ for any $x \in Y_0$;
- **3** $T^{n_k}S_{n_k}y \to y$ for each $y \in Y_0$.
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.
- **Fact 3.** If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$,

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\mathbf{S}_{n_k} x \to \mathbf{0}$ for any $x \in Y_{\mathbf{0}};$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k\in\mathbb{N}}$, two dense subsets $\mathcal{D}_1, \mathcal{D}_2$ in M

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\textbf{2} \ S_{n_k} x \to 0 \text{ for any } x \in Y_0;$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$, two dense subsets $\mathcal{D}_1, \mathcal{D}_2$ in M and a sequence of maps $g_{n_k} : \mathcal{D}_2 \to M$ such that the following conditions hold:

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\textbf{2} \ S_{n_k} x \to 0 \text{ for any } x \in Y_0;$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$, two dense subsets $\mathcal{D}_1, \mathcal{D}_2$ in M and a sequence of maps $g_{n_k} : \mathcal{D}_2 \to M$ such that the following conditions hold:

• $d(f^{n_k}(x), 0) \xrightarrow[k \to +\infty]{} 0$ for any $x \in \mathcal{D}_1$;

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\mathbf{S}_{n_k} x \to \mathbf{0}$ for any $x \in Y_{\mathbf{0}};$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$, two dense subsets $\mathcal{D}_1, \mathcal{D}_2$ in M and a sequence of maps $g_{n_k} : \mathcal{D}_2 \to M$ such that the following conditions hold:

$$\begin{array}{l} \bullet \ d(f^{n_k}(x),0) \underset{k \to +\infty}{\longrightarrow} 0 \ \text{for any } x \in \mathcal{D}_1; \\ \bullet \ d(g_{n_k}(y),0) \underset{k \to +\infty}{\longrightarrow} 0 \ \text{for any } y \in \mathcal{D}_2; \end{array}$$

- $T^{n_k} x \to 0$ for any $x \in X_0$:
- **2** $S_{n_{\nu}} x \rightarrow 0$ for any $x \in Y_0$;
- $T^{n_k} S_{n_k} v \to v \text{ for each } v \in Y_0.$
- **Fact 1.** If *T* satisfies the HC then *T* is hypercyclic.
- **Fact 2.** T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$, two dense subsets \mathcal{D}_1 , \mathcal{D}_2 in M and a sequence of maps $g_{n_k}: \mathcal{D}_2 \to M$ such that the following conditions hold.

1 $d(f^{n_k}(x), 0) \xrightarrow[k \to +\infty]{} 0$ for any $x \in \mathcal{D}_1$; ${\bf 2} \ d(g_{n_k}(y),0) \underset{k \to +\infty}{\longrightarrow} 0 \ \text{for any } y \in \mathcal{D}_2;$
The hypercyclicity criterion (HC). We will say that T satisfies the HC if there exists an increasing sequence of integers (n_k) , two dense sets X_0 and Y_0 in X, and a sequence of maps $S_{n_k}: Y_0 \to X$ such that

- $T^{n_k} x \to 0$ for any $x \in X_0$;
- $\textbf{2} \ S_{n_k} x \to 0 \text{ for any } x \in Y_0;$
- $T^{n_k}S_{n_k}y \to y \text{ for each } y \in Y_0.$
- **Fact 1.** If T satisfies the HC then T is hypercyclic.
- Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence $(n)_{n \in \mathbb{N}}$, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers $(n_k)_{k \in \mathbb{N}}$, two dense subsets $\mathcal{D}_1, \mathcal{D}_2$ in M and a sequence of maps $g_{n_k} : \mathcal{D}_2 \to M$ such that the following conditions hold:

 $\begin{array}{l} \bullet \quad d(f^{n_k}(x),0) & \longrightarrow \\ _{k \to +\infty} 0 \text{ for any } x \in \mathcal{D}_1; \\ \bullet \quad d(g_{n_k}(y),0) & \longrightarrow \\ _{k \to +\infty} 0 \text{ for any } y \in \mathcal{D}_2; \\ \bullet \quad d(f^{n_k} \circ g_{n_k}(y),y) & \longrightarrow \\ _{k \to +\infty} 0 \text{ for any } y \in \mathcal{D}_2; \\ \bullet & \bullet \end{array}$

Then \hat{f} satisfies the hypercyclicity criterion. In particular, \hat{f} is hypercyclic.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded interve
Pom	aarke			
Ren				
0	f satisfies the	e HCL does not imply	in general that f itself is I	nypercyclic.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \widehat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

LA	MA Mot	ivation Fi	rst observations	The hypercyclicity criterion	The case of bounded intervals	
						ĺ

• \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

 Θ If f is weakly mixing, then \hat{f} satisfies the HCL.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

 Θ If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \widehat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

 Θ If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

 \odot There are Lipschitz operators \hat{f} which satisfy the HC, but not the HCL.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

- \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.
 - Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".
- **9** If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

- \odot There are Lipschitz operators \hat{f} which satisfy the HC, but not the HCL.
- O Possible to do a similar "transcription" of some other well-known criteria.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

9 If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

- There are Lipschitz operators \hat{f} which satisfy the HC, but not the HCL.
- O Possible to do a similar "transcription" of some other well-known criteria.

Take $M = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$, and f(0) = 0, $f(1) = \frac{1}{2}$ and $f(\frac{1}{n}) = \frac{1}{n-1}$ otherwise.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

 Θ If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

- There are Lipschitz operators \hat{f} which satisfy the HC, but not the HCL.
- Possible to do a similar "transcription" of some other well-known criteria.

Take $M = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$, and f(0) = 0, $f(1) = \frac{1}{2}$ and $f(\frac{1}{n}) = \frac{1}{n-1}$ otherwise.

Then \hat{f} is conjugate to $T: \ell_1 \to \ell_1$ with $Te_1 = -e_1$ and $Te_n = \frac{n+1}{n-1}e_{n-1}$ $(n \ge 2)$, which satisfies the HC.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

• \hat{f} satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider $M = \mathbb{N} \cup \{0\}$ with the tree-metric from the beginning with $d_n = \frac{1}{2^n}$, and f the "backward shift".

e If f is weakly mixing, then \hat{f} satisfies the HCL.

"Same proof as in the linear case".

- There are Lipschitz operators \hat{f} which satisfy the HC, but not the HCL.
- O Possible to do a similar "transcription" of some other well-known criteria.

Take
$$M = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$$
, and $f(0) = 0$, $f(1) = \frac{1}{2}$ and $f(\frac{1}{n}) = \frac{1}{n-1}$ otherwise.

Then \hat{f} is conjugate to $T: \ell_1 \to \ell_1$ with $Te_1 = -e_1$ and $Te_n = \frac{n+1}{n-1}e_{n-1}$ $(n \ge 2)$, which satisfies the HC.

But for every $(n_k)_k$, $\liminf_{k \to +\infty} d(f^{n_k}(\frac{1}{n}), 0) \ge \frac{1}{2}$ and so f fails the HCL.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

Motivation

e First observations

3 The hypercyclicity criterion

• The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

We let M = [a, b] equipped with $| \cdot |$ and some base point $c \in [a, b]$.

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\widehat{f}: \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $\mathcal{T}: L^1([a, b]) \to L^1([a, b])$

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows:

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \leq s \leq t \leq b$, we have

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \leq s \leq t \leq b$, we have

$$T(\mathbf{1}_{[s,t]}) = \begin{cases} \mathbf{1}_{[f(s),f(t)]}, & \text{if } f(s) \le f(t) \\ -\mathbf{1}_{[f(t),f(s)]}, & \text{if } f(t) \le f(s). \end{cases}$$

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \leq s \leq t \leq b$, we have

$$\mathcal{T}(\mathbf{1}_{[s,t]}) = \left\{egin{array}{c} \mathbf{1}_{[f(s),f(t)]}, & ext{if} \ f(s) \leq f(t) \ -\mathbf{1}_{[f(t),f(s)]}, & ext{if} \ f(t) \leq f(s). \end{array}
ight.$$

Theorem

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\widehat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \leq s \leq t \leq b$, we have

$$\mathcal{T}(\mathbf{1}_{[s,t]}) = \left\{egin{array}{c} \mathbf{1}_{[f(s),f(t)]}, & ext{if} \ f(s) \leq f(t) \ -\mathbf{1}_{[f(t),f(s)]}, & ext{if} \ f(t) \leq f(s). \end{array}
ight.$$

Theorem

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f}^2 is weakly mixing.

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \le s \le t \le b$, we have

$$\mathcal{T}(\mathbf{1}_{[s,t]}) = \left\{egin{array}{c} \mathbf{1}_{[f(s),f(t)]}, & ext{if} \ f(s) \leq f(t) \ -\mathbf{1}_{[f(t),f(s)]}, & ext{if} \ f(t) \leq f(s). \end{array}
ight.$$

Theorem

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f}^2 is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing. Motivation

We let M = [a, b] equipped with $|\cdot|$ and some base point $c \in [a, b]$. Recall that we have a bijective isometry $\Phi : \mathcal{F}(M) \to L^1([a, b])$ s. t.

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \le s \le t \le b$, we have

$$\mathcal{T}(\mathbf{1}_{[s,t]}) = \left\{egin{array}{cc} \mathbf{1}_{[f(s),f(t)]}, & ext{if} \ f(s) \leq f(t) \ -\mathbf{1}_{[f(t),f(s)]}, & ext{if} \ f(t) \leq f(s). \end{array}
ight.$$

Theorem

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f}^2 is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Corollary

Motivation

We let M = [a, b] equipped with $|\cdot|$ and some base point $c \in [a, b]$. Recall that we have a bijective isometry $\Phi : \mathcal{F}(M) \to L^1([a, b])$ s. t.

$$\Phi: \delta(x) \in \mathcal{F}(M) \mapsto \begin{cases} \mathbf{1}_{[c,x]}, & \text{if } c \leq x \\ -\mathbf{1}_{[x,c]}, & \text{if } c > x. \end{cases}$$

Thus $\hat{f} : \mathcal{F}(M) \to \mathcal{F}(M)$ is conjugate to an operator $T : L^1([a, b]) \to L^1([a, b])$ which acts on indicator functions as follows: if $a \le s \le t \le b$, we have

$$\mathcal{T}(\mathbf{1}_{[s,t]}) = \left\{egin{array}{c} \mathbf{1}_{[f(s),f(t)]}, & ext{if} \ f(s) \leq f(t) \ -\mathbf{1}_{[f(t),f(s)]}, & ext{if} \ f(t) \leq f(s). \end{array}
ight.$$

Theorem

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f}^2 is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Corollary

Let $f : [a, b] \rightarrow [a, b]$ be a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$. Then \hat{f} is Devaney chaotic.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985):

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

(i) either f is mixing.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

- (i) either f is mixing.
- (ii) or $c \in (a, b)$ is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both maps $f_{[a,c]}^2$, $f_{[c,b]}^2$ are mixing.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

- (i) either f is mixing.
- (ii) or $c \in (a, b)$ is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both maps $f_{[a,c]}^2$, $f_{[c,b]}^2$ are mixing.

Combine this with [M. Murillo-Arcila and A. Peris, 2015]

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

- (i) either f is mixing.
- (ii) or $c \in (a, b)$ is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both maps $f_{[a,c]}^2$, $f_{[c,b]}^2$ are mixing.

Combine this with [M. Murillo-Arcila and A. Peris, 2015] and the next lemma to prove that \hat{f}^2 is mixing.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

If $f : [a, b] \rightarrow [a, b]$ is a Lipschitz and topologically transitive map with a fixed point $c \in [a, b]$, then \hat{f} is weakly mixing. If moreover f admits at least two fixed points, then \hat{f} is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since $f : [a, b] \rightarrow [a, b]$ is topologically transitive, then

- (i) either f is mixing.
- (ii) or $c \in (a, b)$ is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both maps $f^2_{[a,c]}$, $f^2_{[c,b]}$ are mixing.

Combine this with [M. Murillo-Arcila and A. Peris, 2015] and the next lemma to prove that \hat{f}^2 is mixing.

Lemma

Assume that $T: X \to X$, $X = Y \oplus Z$ where Y and Z are invariant under T. If $T \upharpoonright_Y$ and $T \upharpoonright_Z$ are mixing, then so is T.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

f is mixing and Devaney chaotic.

LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

f is mixing and Devaney chaotic.

One can check that \hat{f} acts as a kind of backwards shift on the haar basis $(h_m)_m$ of $L^1([0, 1])$.
LAMA	Motivation	First observations	The hypercyclicity criterion	The case of bounded intervals

One can check that \hat{f} acts as a kind of backwards shift on the haar basis $(h_m)_m$ of $L^1([0, 1])$.

One can check that \hat{f} acts as a kind of backwards shift on the haar basis $(h_m)_m$ of $L^1([0,1])$.

f is topologically transitive and Devaney chaotic, but not weakly mixing.

One can check that \hat{f} acts as a kind of backwards shift on the haar basis $(h_m)_m$ of $L^1([0,1])$.

f is topologically transitive and Devaney chaotic, but not weakly mixing. f^2 is not topologically transitive.

f is mixing and Devaney chaotic. One can check that \widehat{f} acts as a kind of

backwards shift on the haar basis $(h_m)_m$ of $L^1([0,1])$.

f is topologically transitive and Devaney chaotic, but not weakly mixing. f^2 is not topologically transitive. The operator \hat{f} is actually mixing.

One can check that \widehat{f} acts as a kind of backwards shift on the haar basis $(h_m)_m$ of $L^1([0,1])$.

f is topologically transitive and Devaney chaotic, but not weakly mixing. f^2 is not topologically transitive. The operator \hat{f} is actually mixing.

 \widehat{g} mixing $\implies g$ transitive.

Motivation

Merci pour votre attention!

Merci pour votre attention!

