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Proposition

Let M and N be two metric spaces.

Let f : M → N be a Lipschitz map.
Then, there exists

1 Two Banach spaces F(M) and F(N) together with isometries δM : M → F(M)
and δN : N → F(N),

2 A linear bounded operator f̂ : F(M)→ F(N) with ‖f̂ ‖ = Lip(f ),

such that the following diagram commutes:

M
f //

δM

��

N

δN

��
F(M)

f̂

// F(N)

That is f̂ ◦ δM = δN ◦ f .

Terminology: We refer to f̂ as a Lipschitz operator.

“Program”:
Characterise the (linear) properties of f̂ in (metric) terms of the properties of f .
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In this work, we focus on some dynamical properties (hypercyclicity, (weakly) mixing,
chaotic, etc.)

Definition

A topological dynamical system is a pair (M, f ) where M is a (separable) metric space
and f : M → M is a continuous map.

Definition

A linear dynamical system is a pair (X ,T ) where X normed vector space and
T : X → X is a bounded linear operator.

Why is it interesting?
1 A link between topological dynamical systems and linear dynamical systems.

2 A new family of hypercyclic operators.

3 One advantage: Some definitions make sense for non-linear maps.
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For any x ∈ M, the orbit of x under f is defined by

Orb(x , f ) := {f nx : n ∈ N ∪ {0}}.

Definition

We will say that f is hypercyclic if there exists x ∈ M such that Orb(x , f ) = M.

Definition

We say that f is topologically transitive if, for each pair of nonempty open sets U,V
of M, there exists n ∈ N ∪ {0} such that f n(U) ∩ V 6= ∅.

• If M has no isolated point then any hypercyclic map is topologically transitive.
Proof. Orb(x, f ) = M =⇒ ∃m ≥ 0, f m(x) ∈ U.
Orb(x, f ) \ {x, f (x), . . . , f m(x)} is still dense in M.
=⇒ ∃n ≥ 0 such that f n(f m(x)) = f n+m(x) ∈ V .
=⇒ f n(U) ∩ V 6= ∅

• Conversely, if M is a separable complete space then a topologically transitive map
is hypercyclic (Birkhoff transitivity theorem).
A classical proof uses the Baire category theorem to prove that the set of points in M which have
dense orbit is dense Gδ-set.
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We will also consider the next definitions for a linear D.S. (X ,T ):

Definition

• T is supercyclic whenever there exists a vector x ∈ X such that

Orb(K x ,T ) := {λT nx : λ ∈ K, n ∈ N ∪ {0}} is dense in X .

• T is cyclic if there exists a vector x ∈ X such that span Orb(x , f ) is dense in X .

Clearly, the following chain of implications holds for (X ,T ):

Hypercyclicity ⇒ Supercyclicity ⇒ Cyclicity.

Question

If f : M → M has a given dynamical property, what can be said about
f̂ : F(M)→ F(M)?

Question

Conversely, if f̂ : F(M)→ F(M) has a given dynamical property, what can be said
about f : M → M?
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Lipschitz free spaces...

Let (M, d) be a metric space with a base point 0 ∈ M.

Let X be a real Banach space.

We let
Lip0(M,X ) = {f : M → X Lipschitz | f (0) = 0}

When equipped with the norm

‖f ‖L = Lip(f ) = sup
x 6=y

‖f (x)− f (y)‖X
d(x , y)

,

it is a Banach space.

Notation: Lip0(M) := Lip0(M,R)

Consider the functional δ(x) defined by 〈f , δ(x)〉 = f (x) for every f ∈ Lip0(M).

It is readily seen that δ(x) ∈ Lip0(M)∗ with ‖δ(x)‖ = d(x , 0).

In fact, the map δM : x ∈ M 7→ δ(x) ∈ Lip0(M)∗ is an isometry.

Definition

The Lipschitz-free space over M is the following subspace of Lip0(M)∗:

F(M) := span‖·‖ {δ(x) | x ∈ M} .
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...and the linearisation properties...

Proposition (Fundamental extension property)

For every Banach space X , for every f ∈ Lip0(M,X ), the unique linear operator
f : F(M)→ X defined on span δ(M) by

f
( n∑

i=1

aiδ(xi )
)

=
n∑

i=1

ai f (xi ) ∈ X

is continuous with ‖f ‖ = Lip(f ).

M
f //� _

δM

��

X

F(M)

f

<<

Consequences:
• Lip0(M,X ) ≡ L(F(M),X )
• F(M)∗ ≡ Lip0(M)

Corollary (Linearisation property)

M
f //

δM

��

N

δN

��
F(M)

f̂

// F(N)

(f (0M) = 0N)

f̂
( n∑

i=1

aiδM(xi )
)

=
n∑

i=1

aiδN
(
f (xi )

)
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... and some important features.

Remarks:

1 If 0 ∈ N ⊂ M, then F(N) = span{δ(x) | x ∈ N} ⊂ F(M).

2 M will always be complete.

3 A change of the base point in M does not the isometric structure of F(M).

4 We always assume that f : M → M has a fixed point (f (0) = 0).

Examples

1 (M, d) = (N, | · |). The linear operator satisfying

T : δ(n) ∈ F(N) 7→
n∑

i=1

ei ∈ `1(N)

is an onto linear isometry.

2 M = ([0, 1], | · |). The linear operator

T : δ(t) ∈ F([0, 1]) 7→ 1[0,t] ∈ L1([0, 1])

is an onto linear isometry.

10/26
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Let M = N ∪ {0} be equipped with the tree metric d described below.

1 2 3 n

0
d1

d2
d3

dn

That is, for every n,m ∈ N, d(n, 0) = dn > 0 and d(n,m) = dn + dm.

Proposition

The linear map Φ : F(M)→ `1(N) given by

Φ(δ(n)) = d(n, 0)en = dnen

is a linear surjective isometry.
In particular, any Lipschitz operator f̂ : F(M)→ F(M) is conjugate a bounded
operator T : `1(N)→ `1(N).

In fact,

Ten = Φ ◦ f̂ ◦ Φ−1en =
df (n)

dn
ef (n).
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1 Motivation

2 First observations

3 The hypercyclicity criterion

4 The case of bounded intervals
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Let M be
1 2 3 n

0
d1

d2
d3

dn

and f : M → M such that f (0) = 0 and f (n) = n − 1 otherwise.

Examples

• With dn = 1
2n , then T : `1 → `1 is such that Ten+1 = 2en

Thus f̂ is hypercyclic (while f is not).
• With dn = 1, then T : `1 → `1 is such that Ten+1 = en.

Thus f̂ is not hypercyclic, but it is supercyclic.

Proposition

1 f̂ is hypercyclic ⇐⇒ lim inf
n→+∞

d(n, 0) = 0.

2 If M is uniformly discrete (∃θ > 0, ∀x 6= y , d(x , y) ≥ θ) and bounded
(diam(M) = supx 6=y d(x , y) <∞), then there is no hypercyclic Lipschitz operator.
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Remark: A supercyclic operator has dense range.

Proposition

A Lipschitz map f : M → N has dense range if and only if f̂ : F(M)→ F(N) has dense range.

Remark: A cyclic operator does not necessarily have a dense range : The forward shift
operator on `1(N) (Ten = en+1) is cyclic but its image is not dense in `1(N).

So the same remark holds for Lipschitz operators (take f (n) = n + 1 in the previous
example).

Proposition

If a Lispchitz operator f̂ : F(M)→ F(M) is cyclic, then either f (M) is dense in M or
there exists x ∈ M such that the range f (M) is dense in M \ {x}.
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Proposition

A Lipschitz map f : M → N has dense range if and only if f̂ : F(M)→ F(N) has dense range.

Proof. Recall that f̂
( n∑

i=1
aiδM (xi )

)
=

n∑
i=1

aiδN
(
f (xi )

)
, so that f̂ (span δ(M)) = span δ(f (M)).

“ =⇒ ”

f (M) is dense in N =⇒ δ(f (M)) is dense in δ(N)

=⇒ span δ(f (M)) is dense in span δ(N)

=⇒ f̂ (span δ(M)) is dense in F(N)

“ ⇐= ” If there exists y ∈ N \ f (M), then d(y , f (M)) > 0.

Construct g ∈ Lip0(N) such that g
(
f (M)

)
= {0} while g(y) = 1, and then notice that

dist
(
δ(y), f̂ (F(M))

)
≥

1
‖g‖L

〈g , δ(y)〉 =
1
‖g‖L

> 0.
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Proposition

If a Lispchitz operator f̂ : F(M)→ F(M) is cyclic, then either f (M) is dense in M or
there exists x ∈ M such that the range f (M) is dense in M \ {x}.

Proof. Assume there is x1 6= x2 ∈ M \ f (M).

Fix E := span{x1, x2}
Construct a linear projection P : F(M)→ E such that P�

spanδ(f (M))
= 0.

If γ ∈ F(M) then
P(span Orb(γ, f̂ )) = P(span{γ}) = RP(γ),

which cannot be dense in E .

Thus span Orb(γ, f̂ ) cannot be dense in F(M).
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Lemma

1 For every n ∈ N, f̂ n = (f̂ )n.

2 For every x ∈ M, Orb(δ(x), f̂ ) = δ(Orb(x , f )).

We recall that x is a periodic point of f if there exists n ∈ N such that f n(x) = x , and
we will denote by Per(f ) the set of all periodic points of f .

Corollary

If Per(f ) of f is dense in M, then Per(f̂ ) is dense in F(M).

Corollary

x is a hypercyclic element for f ⇐⇒ δ(x) is a cyclic vector for f̂ .

Proposition

If γ is a supercyclic vector for f̂ : F(M)→ F(M), then γ must be infinitely supported.

Proof. Consequence of the fact that FSn(M) := {γ ∈ F(M) : | supp γ| ≤ n} is closed.
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Definition

• f is (topologically) mixing if for each pair of nonempty open sets U,V of M
there exists N ∈ N ∪ {0} such that for every n ≥ N, f n(U) ∩ V 6= ∅;

• f is (topologically) weakly mixing if f × f is topologically transitive on M ×M,
that is, for every nonempty open sets U1,U2,V1,V2 of M, there exists
n ∈ N ∪ {0} such that f n(U1) ∩ V1 6= ∅ and f n(U2) ∩ V2 6= ∅;
• f is said Devaney chaotic if f is topologically transitive and the set of periodic

points of f is dense in M.

Theorem (M. Murillo-Arcila and A. Peris, 2015)

If T : X → X is a bounded operator and K is a T -invariant set (T (K) ⊂ K) such that
0 ∈ K and T �K is weakly mixing (mixing, weakly mixing and chaotic, respectively),
then T �spanK is also weakly mixing (mixing, weakly mixing and chaotic, respectively).

Since span δ(M) = F(M) and f̂ (δ(M)) ⊂ δ(M),

Corollary (M. Murillo-Arcila and A. Peris, 2015)

If f : M → M is weakly mixing (mixing, weakly mixing and chaotic, respectively) then so is f̂ .
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The hypercyclicity criterion (HC).

We will say that T satisfies the HC if there exists
an increasing sequence of integers (nk ), two dense sets X0 and Y0 in X , and a
sequence of maps Snk : Y0 → X such that

1 T nk x → 0 for any x ∈ X0;

2 Snk x → 0 for any x ∈ Y0;

3 T nkSnk y → y for each y ∈ Y0.

Fact 1. If T satisfies the HC then T is hypercyclic.

Fact 2. T satisfies the HC iff T is weakly mixing.

Fact 3. If T satisfies the HC w.r.t. the full sequence (n)n∈N, then T is mixing.

Theorem (The HCL)

Assume that there exist an increasing sequence of integers (nk )k∈N, two dense subsets
D1, D2 in M and a sequence of maps gnk : D2 → M such that the following
conditions hold:

1 d(f nk (x), 0) −→
k→+∞

0 for any x ∈ D1;

2 d(gnk (y), 0) −→
k→+∞

0 for any y ∈ D2;

3 d(f nk ◦ gnk (y), y) −→
k→+∞

0 for any y ∈ D2;

Then f̂ satisfies the hypercyclicity criterion. In particular, f̂ is hypercyclic.
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

Remarks

1 f̂ satisfies the HCL does not imply in general that f itself is hypercyclic.

Consider M = N ∪ {0} with the tree-metric from the beginning with dn = 1
2n , and f the "backward shift".

2 If f is weakly mixing, then f̂ satisfies the HCL.

"Same proof as in the linear case".

3 There are Lipschitz operators f̂ which satisfy the HC, but not the HCL.

4 Possible to do a similar "transcription" of some other well-known criteria.

Take M = {0} ∪
{ 1

n
: n ∈ N

}
, and f (0) = 0, f (1) = 1

2 and f ( 1
n

) = 1
n−1 otherwise.

Then f̂ is conjugate to T : `1 → `1 with Te1 = −e1 and Ten = n+1
n−1 en−1 (n ≥ 2),

which satisfies the HC.

But for every (nk )k , lim inf
k→+∞

d(f nk ( 1
n

), 0) ≥ 1
2 and so f fails the HCL.
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LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

We let M = [a, b] equipped with | · | and some base point c ∈ [a, b].

Recall that we have a bijective isometry Φ : F(M)→ L1([a, b]) s. t.

Φ : δ(x) ∈ F(M) 7→
{

1[c,x], if c ≤ x

−1[x,c], if c > x .

Thus f̂ : F(M)→ F(M) is conjugate to an operator T : L1([a, b])→ L1([a, b]) which
acts on indicator functions as follows: if a ≤ s ≤ t ≤ b, we have

T (1[s,t]) =

{
1[f (s),f (t)], if f (s) ≤ f (t)

−1[f (t),f (s)], if f (t) ≤ f (s).

Theorem

If f : [a, b]→ [a, b] is a Lipschitz and topologically transitive map with a fixed point
c ∈ [a, b], then f̂ 2 is weakly mixing.
If moreover f admits at least two fixed points, then f̂ is mixing.

Corollary

Let f : [a, b]→ [a, b] be a Lipschitz and topologically transitive map with a fixed point
c ∈ [a, b]. Then f̂ is Devaney chaotic.
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Theorem

If f : [a, b]→ [a, b] is a Lipschitz and topologically transitive map with a fixed point
c ∈ [a, b], then f̂ is weakly mixing.
If moreover f admits at least two fixed points, then f̂ is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since f : [a, b]→ [a, b] is
topologically transitive, then

(i) either f is mixing.

(ii) or c ∈ (a, b) is the unique fixed point of f , f ([a, c]) = [c, b], f ([c, b]) = [a, c] and both
maps f 2

|[a,c], f
2
|[c,b] are mixing.

Combine this with [M. Murillo-Arcila and A. Peris, 2015] and the next lemma to prove that f̂ 2

is mixing.

Lemma

Assume that T : X → X , X = Y ⊕ Z where Y and Z are invariant under T . If T�Y and T�Z
are mixing, then so is T .
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f is mixing and Devaney chaotic.

One can check that f̂ acts as a kind of
backwards shift on the haar basis (hm)m
of L1([0, 1]).
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f is topologically transitive and Devaney
chaotic, but not weakly mixing.

f 2 is not topologically transitive.

The operator f̂ is actually mixing.

ĝ mixing 6=⇒ g transitive.
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ĝ mixing 6=⇒ g transitive.

25/26



LAMA Motivation First observations The hypercyclicity criterion The case of bounded intervals

x

y
f (x)

0 11
2

1
4

3
4

1

1
2
1
4

3
4

f is mixing and Devaney chaotic.

One can check that f̂ acts as a kind of
backwards shift on the haar basis (hm)m
of L1([0, 1]).

x

y
f (x)

0 11
2

1
4

3
4

1

1
2

1
4

3
4

f is topologically transitive and Devaney
chaotic, but not weakly mixing.

f 2 is not topologically transitive.

The operator f̂ is actually mixing.
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Merci pour votre attention!
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