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Then, there exists

® Two Banach spaces F(M) and F(N) together with isometries §py : M — F(M)
and 6y : N — F(N),

© A linear bounded operator f: F(M) — F(N) with ||f]| = Lip(f),

such that the following diagram commutes:

M———>N

‘SMi i‘SN That is Fo 8y = 8y o f.

Terminology: We refer to fasa Lipschitz operator.

“Program’:

Characterise the (linear) properties of f in (metric) terms of the properties of f.
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chaotic, etc.)

Definition

A topological dynamical system is a pair (M, f) where M is a (separable) metric space
and f : M — M is a continuous map.

Definition

A linear dynamical system is a pair (X, T) where X normed vector space and
T : X — X is a bounded linear operator.

Why is it interesting?
® A link between topological dynamical systems and linear dynamical systems.
® A new family of hypercyclic operators.

© One advantage: Some definitions make sense for non-linear maps.
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Proof. Orb(x,f) =M = 3Im >0, f"(x) € U.
Orb(x, f) \ {x, f(x), ..., f7(x)} is still dense in M.
= 3n > 0 such that f"(f™(x)) = "™ (x) € V.

= V)NV #0D

® Conversely, if M is a separable complete space then a topologically transitive map
is hypercyclic (Birkhoff transitivity theorem).

A classical proof uses the Baire category theorem to prove that the set of points in M which have

dense orbit is dense Gg-set.
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Definition

® T is supercyclic whenever there exists a vector x € X such that

Orb(Kx, T) := {AT"x: A €K, n€ NU{0}} is dense in X.

® T is cyclic if there exists a vector x € X such that span Orb(x, f) is dense in X.

Clearly, the following chain of implications holds for (X, T):

Hypercyclicity = Supercyclicity = Cyclicity.

Question

If f: M — M has a given dynamical property, what can be said about
f:F(M)— F(M)?

| N

Question

Conversely, if f : F(M) — F(M) has a given dynamical property, what can be said
about f: M — M?

A
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It is readily seen that §(x) € Lipg(M)* with [|6(x)|| = d(x,0).
In fact, the map dp: x € M — §(x) € Lipg(M)* is an isometry.

Definition

The Lipschitz-free space over M is the following subspace of Lipy(M)*:

F(M) :=spanl'll {5(x) | x € M}.
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Proposition (Fundamental extension property)

For every Banach space X, for every f € Lipy(M, X), the unique linear operator
f: F(M) — X defined on span6(M) by

?(i a;d(x,-)) = i aif(x;) € X £ /
i=1 i=1 Sm -

is continuous with ||f|| = Lip(f). F(M)

Consequences:
® Lipy(M, X) = L(F(M), X)
o F(M)* = Lipo(M)

Corollary (Linearisation property)

7 (F(Op) = Op)

N
l&,\/ n n
?(Z a,-zSM(x,-)) = Z aiaN(f(Xf))
i=1 i=1
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® M will always be complete.
© A change of the base point in M does not the isometric structure of F(M).
© We always assume that f : M — M has a fixed point (f(0) = 0).

® (M,d) = (N,]|-|). The linear operator satisfying
n
T:5(n) € F(N) = > e € £1(N)
i=1

is an onto linear isometry.

© M = ([0,1],]-[). The linear operator

T:5(t) € F([0,1]) = 1po,q € L*([0,1])

is an onto linear isometry.
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Let M be
3 n

1 2
dy dn
0
and f : M — M such that f(0) = 0 and f(n) = n — 1 otherwise.

Examples

® With d, = 2—1,,, then T : ¢1 — #7 is such that Te,11 = 2e,

Thus 7 is hypercyclic (while f is not).
® With d, =1, then T : {3 — ¢1 is such that Te,11 = ey.

Thus 7 is not hypercyclic, but it is supercyclic.

Proposition

© 7 is hypercyclic <> liminf d(n,0) = 0.
n—+o00

© If M is uniformly discrete (30 > 0, Vx # y, d(x,y) > 0) and bounded
(diam(M) = sup,, d(x,y) < o0), then there is no hypercyclic Lipschitz operator.

4
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x is a hypercyclic element for f <= §(x) is a cyclic vector for f.
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Then f satisfies the hypercyclicity criterion. In particular, fis hypercyclic.
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o Possible to do a similar "transcription" of some other well-known criteria.

Take M:{O}U{% : neN}, and £(0) =0, (1) = % and f(%): L otherwise.

n—1
Then f is conjugate to T : {1 — ¢1 with Te; = —e; and Te, = Zfi en—1 (n>2),
which satisfies the HC.
But for every (ng)k, liminf d(f(1),0) > % and so f fails the HCL. (]
k—+o0 n
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(if) or c € (a, b) is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both
maps ﬂ fﬁc’b] are mixing.
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Combine this with [M. Murillo-Arcila and A. Peris, 2015]

24/26



Motivation First observations The hypercycli criterion The case of bounded intervals

If f : [a, b] — [a, b] is a Lipschitz and topologically transitive map with a fixed point
c € [a, b], then f is weakly mixing.
If moreover f admits at least two fixed points, then f is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since f : [a, b] — [a, b] is
topologically transitive, then
(i) either f is mixing.
(if) or c € (a, b) is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both
maps ﬂ fﬁc’b] are mixing.

[a,e]’

Combine this with [M. Murillo-Arcila and A. Peris, 2015] and the next lemma to prove that f2
is mixing.

24/26



Motivation First observations The hypercycli criterion The case of bounded intervals

If f : [a, b] — [a, b] is a Lipschitz and topologically transitive map with a fixed point
c € [a, b], then f is weakly mixing.
If moreover f admits at least two fixed points, then f is mixing.

Proof. The main ingredient (M. Barge and J. Martin, 1985): Since f : [a, b] — [a, b] is
topologically transitive, then
(i) either f is mixing.
(if) or c € (a, b) is the unique fixed point of f, f([a, c]) = [c, b], f([c, b]) = [a, c] and both
maps ﬂ fﬁc’b] are mixing.

[a,e]’

Combine this with [M. Murillo-Arcila and A. Peris, 2015] and the next lemma to prove that f2
is mixing.

Assume that T : X — X, X =Y @ Z where Y and Z are invariant under T. If T, and T|,
are mixing, then so is T.

|
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The case of bounded intervals

Merci pour votre attention!

f mixing == ?Weakly mixing <= f satisfies the HC
In general: [MP]” [MP]” HCL”}

f mixing == f weakly mixing = ¥ satisfies the HCL

?
i N o N

f satisfies the HC = F hypercyclic > ?supercyclic Eand 7cyclic

o T T e

f satisfies the HCL =——=%=——=>f has a dense orbit

?Weakly mixing and chaotic &————= Fweakly mixing

For [a, b: T~ e\

f weakly mixing = f Devaney chaotic <= f is transitive
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