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In particular, when AN = @, we have d(7A, M) = ko < k if the following is
satisfied :

In the increasing enumeration of m U m, all blocks of consecutive n;'s or
consecutive m;’s are of size at most ko and there is at least one of these blocks
which is of size ko.

For instance, in the following case :

n<np<...<Np<m<m<...<Mg <N < Mg < ... << Mmg.
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The following proposition should be clear from the definitions.

Proposition

Let X and Y be a Banach spaces.
® X coarsely embeds into Y and Y has (Q) = X has (Q).
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@® Stable Banach spaces enjoy (Q). In particular Ly has (Q).
“limp limp || X0 — Ym]|| = limm limp [|x0 — ym|| 7).

©® The space ¢ fail property (Q). Indeed, let (s,);2; denote the summing
basis of co. For any k € N, the map fi : Gk(N) — co defined by

k
W) = sn:
i=1

is a bi-Lipschitz embedding (distortion 2).
Thus co does not coarsely embed into any reflexive space.

@ The James space J and its dual J™ fail property Q
(“not so easy”, based on James sequences in non reflexive spaces).

8/25



Kalton's interlaced graphs and property Q

We recall that :

X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

9/25



Kalton's interlaced graphs and property Q

We recall that :
X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

So it is quite natural to ask the following :

?2?7?

X has not (Q) = (Gk(N))ken equi-coarsely embeds into X.

9/25



Kalton's interlaced graphs and property Q

We recall that :
X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

So it is quite natural to ask the following :

?2?7?

X has not (Q) = (Gk(N))ken equi-coarsely embeds into X.

Answer : No!

9/25



Kalton's interlaced graphs and property Q The main result

We recall that :
X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

So it is quite natural to ask the following :

?2?7?

X has not (Q) = (Gk(N))ken equi-coarsely embeds into X.

Answer : No!

The James space J and its dual J™ fail (Q) (Kalton 2007).

9/25



Kalton's interlaced graphs and property Q The main result

We recall that :
X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

So it is quite natural to ask the following :

?2?7?

X has not (Q) = (Gk(N))ken equi-coarsely embeds into X.

Answer : No!

The James space J and its dual J™ fail (Q) (Kalton 2007).
However we will prove that (Gx(N))«en does not equi-coarsely embed into J

and J*.

9/25



Kalton's interlaced graphs and property Q

We recall that :

X has (Q) = (Gk(N))ken does not equi-coarsely embed into X.

So it is quite natural to ask the following :

?2?7?

X has not (Q) = (Gk(N))ken equi-coarsely embeds into X.

Answer : No!

The James space J and its dual J™ fail (Q) (Kalton 2007).
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— This result isolate a coarse invariant which is close to but different from
property Q.
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Moreover, we will say that the modulus 8 is of power type p € [1, 00) if there
is a constant ¢ > 0 such that :

Vt >0, dx(t) > ct’.

The norm of X is p-(AUS) if and only if the norm of X™* is weak™ g-(AUC)
where g is the conjugate exponent of p.
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p-(AUC) norm.
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the sequence (x*(7, t))¢>n is weak™-null.

For every Lipschitz map f : Gk(N) — X*, there exists an infinite subset M of N
and a weak™-null tree (x*(n))zepy<« in X* such that

o ||x*(m)||x= < Lip(f), for every m € [M]=K \ {0}.
o (M) =7 ox*(m,...,n;), for every i € Gy (M).

Idea of the proof : Induction on k € N, using weak®*-compactness and a
diagonal argument.
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We argue by contradiction.
We let (fi)ken be a family of equi-coarse embedding of (Gk(N))ken into X™.
Let w be the common compression modulus and and p the extension modulus.

We fix N € N such that p(N) is big enough (see the condition at the end).
We let k = N? and f = fi. In fact, we see f : Gk(N) — X***.

We decompose f as a weak™-null tree in X™** :

Vie G(N), f(A) =S z(n,...,n) € X,
i=0

with ||z(n, ..., n)| <w(1)if i #0.
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Let us do the proof in the case p = 2. WLOG X™ is separable.

We argue by contradiction.
We let (fi)ken be a family of equi-coarse embedding of (Gk(N))ken into X™.
Let w be the common compression modulus and and p the extension modulus.

We fix N € N such that p(N) is big enough (see the condition at the end).
We let k = N? and f = fi. In fact, we see f : Gk(N) — X***.
We decompose f as a weak™-null tree in X™** :

va € Gk(N), f(n) = z(nl,...,n;)EX***,
i=0

with ||z(n, ..., n)| <w(1)if i #0.
We decompose z(ni, ..., n;) through the identification X*** = X* @ X+ :

z(ny,...,n)) = x"(m,...,m) + t(n,...,n),

e X* e Xt

14/25



The proof

Step 1 : weak*-null tree

f(ﬁ):Zz(nl, n,)—ZX ni,...,ni)+ t(ny, ..., n).

i=0
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Step 1 : weak*-null tree

n

f(n) = Zz(nl,...7n,-) = ZX*(nl,.,.7n,-)+ t(n1,...,n).

i=0

@ Since t(m,...,n;)) € X, we get that (x*(M))zep<+ is a weak™-null tree
in X*.
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Step 1 : weak*-null tree

n

f(n) = Zz(nl,...7n,-) = ZX*(nl,.,.7n,-)+ t(n1,...,n).

i=0

@ Since t(n,...,n) € X', we get that (x*(n n))aep<+ is a weak™-null tree
in X*.

® Moreover, since f actually takes values in X™, we have that :

vn € Gk(N), f(n) = Zx N1, ...,n;).
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Coarse embeddings

Step 2 : Using the weak* A. U. Convexity

Claim

Up to extract a full subgraph (“Gx(M) instead of G«(N)"), we may assume the
existence of C; > 0 such that the following holds :

We write E, = {fi= (n1,...,n;) € [N]S¥ : nj =r}.

Then, VA' € E,,...,A' €E, (n <...<n €N), Ver,...,e € {-1,1}:

[ Zx( (Z e @)
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J
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Step 2 : Using the weak* A. U. Convexity

Idea of the proof : Let | - | be an equivalent weak™ 2-(AUC) norm on X* with
modulus : 3‘*.‘(1:) > 2ct?. We let p1(t) = o t?

“Inductive step” : Recall that x*(ny,...,n;)) — 0, so for ”'*! € E, ., with
nj—»oo

ri+1 far enough, we have :

W e S 18] 5 (1x°]
|st )+ X @] =15 x> |S|+ 5”(|5|)
> 5 5 |X*|2 R N<P1 S *
> S|+ al ‘\SIZ = NS X7
> N (N b (@), 7))
= N @] @ ))
I+1
>

wp—iviz \ /2
Ci(;]x )k
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Ramsey theorem : Again, up to extract a full subgraph, me may assume :
Vi <k, 3Kj, Vny < ... <nj X (. .om)| = K

2
Claim : | Y~ K? < w(d)”

Indeed, choose n,m € Gk(N) so that ny < my < ... < ng < my. Then :

X*

w(l) > |If(A) — f(m)||x~ = ”Zx*(nl,...,n;) —Zx*(ml,...,m;)|

: 2 * 2 1/2
> G (DI (s )+ I (s m) e )
i=1

1/2

A%

> G (2

HM»

k 1/2
> \/Ei(:1 :E:: )

/\
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OREEE L
TN 2

From now on, we start the construction of 7, m such that d(n, m) = N but
[[£(7) — f£(m)||x~ is “too small” (in fact smaller than p(N)).
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Step 3 : “The interlaced argument”

Since Z K? < 2C2 , there exists j € {0, N> — N} such that :

J+N

ZKZ N 124

i=j+1

v
N

From now on, we start the construction of 7, m such that d(n, m) = N but
[[£(7) — f£(m)||x~ is “too small” (in fact smaller than p(N)).

e Fori<jletni=mi=i
e Forj+1<i<j+N,letni=iand mi=i+ N
e For j+ N+ 1< i<k, nj=m; “large enough”, to be precised...

m=m<...<n=m <njiy1 <...<njpn<mjy1 <...<Mjypn

Equality Block of size N Block of size N

< Njgnt1r = Migntr < .o < N = My

Equality
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We recall that the aim is to estimate : ||f(71) — f(m)||x+ which is bounded

above by :
J+N J+N
’ Z x*(ny,...,n) —x*(ml,...7m,')H + Z x*(ny,...,n) —x*(m17...,m;)H
i=jt1 i=jt1
A B

First, we deal with A :
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Step 3 : “The interlaced argument”

We recall that the aim is to estimate : ||f(71) — f(m)||x+ which is bounded

above by :
J+N
) Zx*(nl,...,n;)—x mi,...,m ‘ “(n1,...,n x(m17...,m;)H
i=j+1
A B
First, we deal with A :
J+N J+N 12
A < 23 K<aVN( Y K?)
i=j+1 i=j+1
< 2N (w(1)2)1/2
< U e
1

IA
N
£
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In this final step, we finish the construction of @, m in such a way that we
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Vi< kVm <...<nj: t(nl,...,n;)zt;.

Proposition (G. Lancien - M. Raja, 2017)

Let X be a Banach space. Then the bidual norm on X** has the following

property :
For any t € (0,1), any weak™-null sequence (x;*)s21 in Bx== and any x € Sx
we have :

lim sup||x + tx; || <1+ py(t, x).
n— oo
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Let NjiyN+1 = Mjtpya >j+ 2N + 1.
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Let X be a Banach space. Then the bidual norm on X** has the following
property :
For any t € (0,1), any weak™-null sequence (x;*)s21 in Bx=+ and any x € Sx
we have :

limsup||x + tx, || <1+ py(t,x).

n— oo

Let NjiyN+1 = Mjtpya >j+ 2N + 1.
Using this last result, there exists njyn4+2 = Mjrn2 > njin+1 such that the
following holds :

‘X*(. ey nj+N+1) — X*(. ey mj+N+1) + X*(. N nj+N+2) — X*(. “ey mj+N+2)|
~ ‘X*( N nj+/\/+1) - X*(. N mj+/\/+1) + Z(. ey nj+/\/+2) - Z(. . mj+N+2)\
2
z
= I S|+l = (L)
~ N§2(|X*( cey nj+N+1) — X*(. N mj+/\/+1)|7 |X*( N nj+/\/+2) - X*(. cey mj+/\/+2)|)
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Exactly the same way, we continue the construction of A, m and we finally
obtain :

J+N
) Zx*(nl,...,n;) —X*(ml,...7m,-)’

i=j+1
< N}fz_j—N(|X*(' <oy MigN+1 — X*(' ) mj+N+1)|7 SRR |X*( ) nk) - X*(' ) mk)‘)
< NE2 o (2Kiinis - 2K
k

<a( > 4K,-2)1/2.

i=j+N+1
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Step 4 : Using the A. U. Smoothness

Exactly the same way, we continue the construction of A, m and we finally

obtain :
N
) Zx*(nl,...,n;)—X*(ml,...7m,-)’
i=j+1
SN2y (X mene =Xy miengn) ] X ) = XT( L, mi)])

< N;fzj N(2KJ'+N+17 .. .,2Kk)
k

<a( Y k)"

i=j+N+1

And so going back to the original norm :

ol £ 0" 8

i=j+N+1
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Step 5 : Conclusion

Finally,

G
"G

£~ Fmlix- < A+ B < V3 4 2y,

But d(7,m) = N, this contradicts the fact that

w(l) C2
BT

p(N) > V2 ==~ w(1).
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Thank you very much'!
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