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Coarse embedding

Notation : M,N will denote a metric spaces while X ,Y will be real Banach
spaces.

Let f : M → N be any map. We de�ne the following, for every t ∈ [0,∞) :

• The compression modulus : ρf (t) = inf{dN(f (x), f (y)) : dM(x , y) ≥ t}.
• The extension modulus : ωf (t) = sup{dN(f (x), f (y)) : dM(x , y) ≤ t}.

Note that we have :

∀ (x , y) ∈ M2 : ρf (dM(x , y)) ≤ dN(f (x), f (y)) ≤ ωf (dM(x , y)).

De�nition (Coarse embedding)

We say that f : M → N is a coarse embedding if the following are satis�ed :

• limt→∞ ρf (t) =∞.

• ωf (t) <∞ for every t ∈ [0,+∞).
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Equi-coarse embedding

De�nition (Equi-coarse embedding)

Next, let (Mi )i∈I be a family of metric spaces.

We say that the family (Mi )i∈I equi-coarsely embeds into a metric space N if
there exist two maps ρ, ω : [0,+∞)→ [0,+∞) and maps fi : Mi → N for i ∈ I
such that :

1 ρ(t) ≤ ρfi (t) and ωfi (t) ≤ ω(t) for every i ∈ I and t ∈ (0,∞).

2 limt→∞ ρ(t) =∞,

3 ω(t) <∞ for every t ∈ [0,+∞),
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Kalton's interlaced graphs

Let M be an in�nite subset of N.

We denote Gk(M) the set of all subsets of M of size k.
We will always write an element n of Gk(M) as follows :

n = (n1, . . . , nk) with n1 < . . . < nk .

We equip Gk(M) with the graph metric d satisfying d(n,m) = 1 whenever
n 6= m and

n1 ≤ m1 ≤ n2 . . . ≤ nk ≤ mk or m1 ≤ n1 ≤ m2 . . . ≤ mk ≤ nk .

In particular, when n ∩m = ∅, we have d(n,m) = k0 ≤ k if the following is
satis�ed :
In the increasing enumeration of n ∪m, all blocks of consecutive ni 's or
consecutive mi 's are of size at most k0 and there is at least one of these blocks
which is of size k0.
For instance, in the following case :

n1 < n2 < . . . < nk0︸ ︷︷ ︸ < m1 < m2 < . . . < mk0︸ ︷︷ ︸ < nk0+1 < mk0+1 < . . . < nk < mk .
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Property Q

De�nition

Let X be a Banach space. We say that X has property Q if :

∃C ≥ 1, ∀k ∈ N, ∀f : Gk(N)→ X Lipschitz, ∃M in�nite subset of N s. t. :

∀ n,m ∈ Gk(M), ‖f (n)− f (m)‖ ≤ CLip(f ).

Remark

Since d is a graph distance on Gk(N), Lip(f ) = ωf (1).

The following proposition should be clear from the de�nitions.

Proposition

Let X and Y be a Banach spaces.

1 X coarsely embeds into Y and Y has (Q) =⇒ X has (Q).
2 X has (Q) =⇒ (Gk(N))k∈N does not equi-coarsely embed into X .
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Examples (Kalton (2007))

1 Re�exive spaces enjoy property Q. Since it is known that `1 coarsely
embeds into `2, `1 also has (Q).

2 Stable Banach spaces enjoy (Q). In particular L1 has (Q).
(� limn limm ‖xn − ym‖ = limm limn ‖xn − ym‖ �).

3 The space c0 fail property (Q). Indeed, let (sn)∞n=1 denote the summing
basis of c0. For any k ∈ N, the map fk : Gk(N)→ c0 de�ned by

fk(n) =
k∑

i=1

sni ,

is a bi-Lipschitz embedding (distortion 2).
Thus c0 does not coarsely embed into any re�exive space.

4 The James space J and its dual J ∗ fail property Q
(�not so easy�, based on James sequences in non re�exive spaces).
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We recall that :

X has (Q) =⇒ (Gk(N))k∈N does not equi-coarsely embed into X .

So it is quite natural to ask the following :

Question

X has not (Q) ? ? ?
=⇒ (Gk(N))k∈N equi-coarsely embeds into X .

Answer : No !

The James space J and its dual J ∗ fail (Q) (Kalton 2007).
However we will prove that (Gk(N))k∈N does not equi-coarsely embed into J
and J ∗.

→ This result isolate a coarse invariant which is close to but di�erent from
property Q.
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(AUS)

Consider a real Banach space X . For t > 0, x ∈ SX and Y a linear subspace of
X with dim(X/Y ) <∞, we de�ne

ρX (t, x ,Y ) = sup
y∈SY

‖x + ty‖ − 1

ρX (t, x) = inf
dim(X/Y )<∞

ρ(t, x ,Y )

ρX (t) = sup
x∈SX

ρ(t, x).

The norm ‖ · ‖X is then said to be asymptotically uniformly smooth (in short
AUS) if

lim
t→0

ρX (t)

t
= 0.

Moreover, we will say that the modulus ρX is of power type p ∈ (1,∞) (in
short p-(AUS)) if there is a constant c > 0 such that :

∀t > 0, ρX (t) ≤ ctp.
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weak*-(AUC)

Similarly, there is in X ∗ a modulus of weak∗ asymptotic uniform convexity
de�ned by

δ
∗
X (t) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE

‖x∗ + ty∗‖ − 1,

where E runs through all weak∗-closed subspaces of X ∗ of �nite codimension.

Then, the norm ‖ · ‖X∗ is said to be weak∗ asymptotically uniformly convex (in
short weak∗ AUC) if

∀t > 0, δ
∗
X (t) > 0.

Moreover, we will say that the modulus δ
∗
X is of power type p ∈ [1,∞) if there

is a constant c > 0 such that :

∀t > 0, δ
∗
X (t) ≥ ctp.

Fact

The norm of X is p-(AUS) if and only if the norm of X ∗ is weak∗ q-(AUC)
where q is the conjugate exponent of p.
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The main result

We recall that a Banach space is said to be quasi-re�exive if
dim(X ∗∗/X ) <∞.

Theorem (LPP, `18)

Let X be a quasi-re�exive Banach space and let p ∈ (1,∞).
Assume that X ∗ admit an equivalent p-(AUS) norm and an equivalent weak∗

p-(AUC) norm.
Then, (Gk(N))k∈N does not equi-coarsely embed into X ∗.

Corollary

The family (Gk(N))k∈N does not equi-coarsely embed into J and J ∗.
The same results holds for Jp and J ∗p .
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Step 1 : weak*-null tree

Notation :

• [N]≤k : denotes the set of all subsets of N with cardinality at most k.

• A weak∗-null tree : (x∗(n))n∈[N]≤k ⊂ X ∗ such that for every n ∈ [N]≤k−1,
the sequence (x∗(n, t))t>n is weak∗-null.

Lemma

For every Lipschitz map f : Gk(N)→ X ∗, there exists an in�nite subset M of N
and a weak∗-null tree (x∗(n))n∈[M]≤k in X ∗ such that

• ‖x∗(m)‖X∗ ≤ Lip(f ), for every m ∈ [M]≤k \ {∅}.
• f (n) =

∑n
i=0 x

∗(n1, . . . , ni ), for every n ∈ Gk(M).

Idea of the proof : Induction on k ∈ N, using weak∗-compactness and a
diagonal argument.
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Step 1 : weak*-null tree

Let us do the proof in the case p = 2. WLOG X ∗ is separable.

We argue by contradiction.
We let (fk)k∈N be a family of equi-coarse embedding of (Gk(N))k∈N into X ∗.
Let ω be the common compression modulus and and ρ the extension modulus.

We �x N ∈ N such that ρ(N) is big enough (see the condition at the end).
We let k = N2 and f = fk . In fact, we see f : Gk(N)→ X ∗∗∗.

We decompose f as a weak∗-null tree in X ∗∗∗ :

∀n ∈ Gk(N) , f (n) =
n∑

i=0

z(n1, . . . , ni ) ∈ X ∗∗∗,

with ‖z(n1, . . . , ni )‖ ≤ ω(1) if i 6= 0.

We decompose z(n1, . . . , ni ) through the identi�cation X ∗∗∗ = X ∗ ⊕ X⊥ :

z(n1, . . . , ni ) = x∗(n1, . . . , ni )︸ ︷︷ ︸ + t(n1, . . . , ni )︸ ︷︷ ︸,
∈ X ∗ ∈ X⊥.
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Step 1 : weak*-null tree

f (n) =
n∑

i=0

z(n1, . . . , ni ) =
n∑

i=0

x∗(n1, . . . , ni ) + t(n1, . . . , ni ).

Remarks

1 Since t(n1, . . . , ni ) ∈ X⊥, we get that (x∗(n))n∈[N]≤k is a weak∗-null tree
in X ∗.

2 Moreover, since f actually takes values in X ∗, we have that :

∀n ∈ Gk(N), f (n) =
n∑

i=0

x∗(n1, . . . , ni ).
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Step 2 : Using the weak* A. U. Convexity

Claim

Up to extract a full subgraph (�Gk(M) instead of Gk(N)�), we may assume the
existence of C1 > 0 such that the following holds :

We write Er = {n = (n1, . . . , nj) ∈ [N]≤k : nj = r}.
Then, ∀n1 ∈ Er1 , . . . , n

l ∈ Erl (r1 < . . . < rl ∈ N), ∀ε1, . . . , εl ∈ {−1, 1} :

∥∥ l∑
i=1

εix
∗(ni )

∥∥
X∗ ≥ C1

( l∑
i=1

‖x∗(ni )‖2X∗

)1/2
.
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Step 2 : Using the weak* A. U. Convexity

Idea of the proof : Let | · | be an equivalent weak∗ 2-(AUC) norm on X ∗ with

modulus : δ
∗
|·|(t) ≥ 2c1t

2. We let ϕ1(t) = c1t
2

�Inductive step� : Recall that x∗(n1, . . . , nj)
w∗
−→
nj→∞

0, so for ni+1 ∈ Erl+1 with

rl+1 far enough, we have :

∣∣∣ l∑
i=1

εix
∗(ni ) + x∗(nl+1)

∣∣∣ := |S + x∗| ≥ |S |+ |S |
2
δ
∗
|·|

( |x∗|
|S |

)
≥ |S |+ c1|S |

|x∗|2

|S |2 := Nϕ1
2 (|S |, |x∗|)

≥ Nϕ1
2

(
Nl(|x∗(n1)|, . . . , |x∗(nl)|), |x∗|

)
= Nϕ1

l+1(|x
∗(n1)|, . . . , |x∗(nl+1)|)

≥ C ′1

( l+1∑
i=1

|x∗(ni )|2X∗

)1/2
.
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Step 3 : �The interlaced argument�

Ramsey theorem : Again, up to extract a full subgraph, me may assume :

∀j ≤ k, ∃Kj , ∀n1 < . . . < nj : ‖x∗(n1, . . . , nj)‖ ' Kj .

Claim :

k∑
i=1

K 2
j ≤

ω(1)2

2C 2
1

.

Indeed, choose n,m ∈ Gk(N) so that n1 < m1 < . . . < nk < mk . Then :

ω(1) ≥ ‖f (n)− f (m)‖X∗ =
∥∥ k∑

i=1

x∗(n1, . . . , ni )−
k∑

i=1

x∗(m1, . . . ,mi )
∥∥
X∗

≥ C1

( k∑
i=1

‖x∗(n1, . . . , ni )‖2X∗ + ‖x∗(m1, . . . ,mi )‖2X∗

)1/2
≥ C1

(
2

k∑
i=1

K 2
j

)1/2
≥
√
2C1

( k∑
i=1

K 2
j

)1/2
.
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Step 3 : �The interlaced argument�

Since
k∑

i=1

K 2
j ≤

ω(1)2

2C 2
1

, there exists j ∈ {0,N2 − N} such that :

j+N∑
i=j+1

K 2
i ≤

1

N

ω(1)2

2C 2
1

.

From now on, we start the construction of n,m such that d(n,m) = N but
‖f (n)− f (m)‖X∗ is �too small� (in fact smaller than ρ(N)).

• For i ≤ j let ni = mi = i

• For j + 1 ≤ i ≤ j + N, let ni = i and mi = i + N

• For j + N + 1 ≤ i ≤ k, ni = mi �large enough�, to be precised...

n1 = m1 < . . . < nj = mj︸ ︷︷ ︸ < nj+1 < . . . < nj+N︸ ︷︷ ︸ < mj+1 < . . . < mj+N︸ ︷︷ ︸
Equality Block of size N Block of size N

< nj+N+1 = mj+N+1 < . . . < nk = mk︸ ︷︷ ︸ .
Equality

19/25



Coarse embeddings Kalton's interlaced graphs and property Q The main result The proof

Step 3 : �The interlaced argument�

Since
k∑

i=1

K 2
j ≤

ω(1)2

2C 2
1

, there exists j ∈ {0,N2 − N} such that :

j+N∑
i=j+1

K 2
i ≤

1

N

ω(1)2

2C 2
1

.

From now on, we start the construction of n,m such that d(n,m) = N but
‖f (n)− f (m)‖X∗ is �too small� (in fact smaller than ρ(N)).

• For i ≤ j let ni = mi = i

• For j + 1 ≤ i ≤ j + N, let ni = i and mi = i + N

• For j + N + 1 ≤ i ≤ k, ni = mi �large enough�, to be precised...

n1 = m1 < . . . < nj = mj︸ ︷︷ ︸ < nj+1 < . . . < nj+N︸ ︷︷ ︸ < mj+1 < . . . < mj+N︸ ︷︷ ︸
Equality Block of size N Block of size N

< nj+N+1 = mj+N+1 < . . . < nk = mk︸ ︷︷ ︸ .
Equality

19/25



Coarse embeddings Kalton's interlaced graphs and property Q The main result The proof

Step 3 : �The interlaced argument�

Since
k∑

i=1

K 2
j ≤

ω(1)2

2C 2
1

, there exists j ∈ {0,N2 − N} such that :

j+N∑
i=j+1

K 2
i ≤

1

N

ω(1)2

2C 2
1

.

From now on, we start the construction of n,m such that d(n,m) = N but
‖f (n)− f (m)‖X∗ is �too small� (in fact smaller than ρ(N)).

• For i ≤ j let ni = mi = i

• For j + 1 ≤ i ≤ j + N, let ni = i and mi = i + N

• For j + N + 1 ≤ i ≤ k, ni = mi �large enough�, to be precised...

n1 = m1 < . . . < nj = mj︸ ︷︷ ︸ < nj+1 < . . . < nj+N︸ ︷︷ ︸ < mj+1 < . . . < mj+N︸ ︷︷ ︸
Equality Block of size N Block of size N

< nj+N+1 = mj+N+1 < . . . < nk = mk︸ ︷︷ ︸ .
Equality

19/25



Coarse embeddings Kalton's interlaced graphs and property Q The main result The proof

Step 3 : �The interlaced argument�

We recall that the aim is to estimate : ‖f (n)− f (m)‖X∗ which is bounded
above by :

∥∥∥ j+N∑
i=j+1

x∗(n1, . . . , ni )− x∗(m1, . . . ,mi )
∥∥∥︸ ︷︷ ︸
+
∥∥∥ j+N∑

i=j+1

x∗(n1, . . . , ni )− x∗(m1, . . . ,mi )
∥∥∥︸ ︷︷ ︸

A B

First, we deal with A :

A ≤ 2

j+N∑
i=j+1

Ki ≤ 2
√
N
( j+N∑

i=j+1

K 2
i

)1/2
≤ 2

√
N√
N

(ω(1)2
2C 2

1

)1/2
≤
√
2
ω(1)

C1

.
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Step 4 : Using the A. U. Smoothness

In this �nal step, we �nish the construction of n,m in such a way that we
manage to deal with B.

We denote | · | a 2-(AUS) norm on X ∗, with modulus

ρ|·|(t) ≤
c2
2
t2, for some c2 > 0. Let ϕ2(t) = c2t

2.

Since X⊥ is �nite dimensional, we use Ramsey's theorem to stabilize the
elements t(n1, . . . , ni ) :

∀i ≤ k, ∀n1 < . . . < ni : t(n1, . . . , ni ) ' ti .

Proposition (G. Lancien - M. Raja, 2017)

Let X be a Banach space. Then the bidual norm on X ∗∗ has the following
property :
For any t ∈ (0, 1), any weak∗-null sequence (x∗∗n )∞n=1 in BX∗∗ and any x ∈ SX

we have :
lim sup
n→∞

‖x + tx∗∗n ‖ ≤ 1+ ρX (t, x).
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Step 4 : Using the A. U. Smoothness

Proposition (G. Lancien - M. Raja, 2017)

Let X be a Banach space. Then the bidual norm on X ∗∗ has the following
property :
For any t ∈ (0, 1), any weak∗-null sequence (x∗∗n )∞n=1 in BX∗∗ and any x ∈ SX

we have :
lim sup
n→∞

‖x + tx∗∗n ‖ ≤ 1+ ρX (t, x).

Let nj+N+1 = mj+n+1 > j + 2N + 1.

Using this last result, there exists nj+N+2 = mj+N+2 > nj+N+1 such that the
following holds :

|x∗(. . . , nj+N+1)− x∗(. . . ,mj+N+1) + x∗(. . . , nj+N+2)− x∗(. . . ,mj+N+2)|
' |x∗(. . . , nj+N+1)− x∗(. . . ,mj+N+1) + z(. . . , nj+N+2)− z(. . . ,mj+N+2)|

:= |x∗ + z | ≤ |x∗|+ c2|x∗|
|z |2

|x∗|2 = Nϕ2
2 (|x∗|, |z |)

' Nϕ2
2 (|x∗(. . . , nj+N+1)− x∗(. . . ,mj+N+1)|, |x∗(. . . , nj+N+2)− x∗(. . . ,mj+N+2)|)
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Step 4 : Using the A. U. Smoothness

Exactly the same way, we continue the construction of n,m and we �nally
obtain :

∣∣∣ j+N∑
i=j+1

x∗(n1, . . . , ni )− x∗(m1, . . . ,mi )
∣∣∣

≤ Nϕ2
K−j−N

(
|x∗(. . . , nj+N+1 − x∗(. . . ,mj+N+1)|, . . . , |x∗(. . . , nk)− x∗(. . . ,mk)|

)
≤ Nϕ2

k−j−N(2Kj+N+1, . . . , 2Kk)

≤ C ′2

( k∑
i=j+N+1

4K 2
i

)1/2
.

And so going back to the original norm :

B ≤ C2

( k∑
i=j+N+1

K 2
i

)1/2
≤ C2√

2C1

ω(1).
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Step 5 : Conclusion

Finally,

‖f (n)− f (m)‖X∗ ≤ A+ B ≤
√
2
ω(1)

C1

+
C2√
2C1

ω(1).

But d(n,m) = N, this contradicts the fact that

ρ(N) >
√
2
ω(1)

C1

+
C2√
2C1

ω(1).
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Thank you very much !
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