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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

(M, d) pointed metric space with origin 0

Lip0(M) = {f : M → R Lipschitz : f (0) = 0}

‖f ‖L = sup
x 6=y∈M

|f (x)− f (y)|
d(x , y)

(Best Lipschitz constant of f )

(Lip0(M), ‖ · ‖L) Banach space.
For x ∈ M, define δM(x) ∈ Lip0(M)∗ by 〈δM(x), f 〉 = f (x).

Definition
Lipschitz-free space over M :
F(M) := span {δM(x) ; x ∈ M}‖·‖ ⊂ Lip0(M)∗.

Remark
δM : x ∈ M 7→ δM(x) ∈ F(M) is a non linear isometry.
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space F(M) has the following property :
∀X Banach, ∀ f : M → X Lipschitz, ∃! f : F(M)→ X with
‖f ‖ = ‖f ‖L and such that the following diagram commutes

M f //� _

δM
��

X

F(M)
f

<<

The map f ∈ Lip0(M,X ) 7→ f ∈ L(F(M),X ) is an onto linear
isometry.

Remark
F(M)∗ = Lip0(M). Uniqueness of the predual for : m. s. of finite
diameter and complete and convex m. s. (⇒ Banach spaces)
(Weaver, 2016)
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Let M1 and M2 be two pointed metric spaces.

Let L : M1 → M2 be a Lipschitz map.
There exist L̂ : F(M1)→ F(M2) such that ‖L̂‖ = ‖L‖L and such
that the following diagram commutes :

M1
L //

δM1
��

M2

δM2
��

F(M1)
L̂
// F(M2)

where δMi is the isometry defined above :

δMi : x ∈ Mi 7→ δMi (x) ∈ F(Mi ).
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Examples

i) F(N) = `1(N)

ii) F(R) = L1(R)
iii) F(R2) = ?

iv) F(R2) ' F(R3) ?

Godefroy - Kalton program :
Study the behavior of F(M) for "simple spaces M", and look for
properties such as

Approximation properties : (AP), (BAP), (MAP).
Existence of Basis or FDD.
(RNP) / containment of L1.
weakly sequential completeness / containment of c0.
`1 properties : (Schur), (Strong Schur), containment of `1,
embeddings into `1 sums.

Simple spaces ?Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm −→ `1, c0...
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Introduction - Background information Around some `1 properties A new family of examples

Some recent results

Here is a Listing (non exhaustive) of some recent result about
F(Rn) :

(Naor - Schechtman) : For any measure µ, F(R2) 6↪→ L1(µ).
(Cúth - Doucha - Wojtaszczyk) : If M ⊆ Rd then F(M) is
w.s.c. In particular c0 6↪→ F(M).
(Pernecká -Hájek) : F(Rn) has a Schauder basis. Moreover,
for every M ⊆ Rn bounded and every and convex, F(M) has
the Schauder basis as well.
(Lancien - Pernecká) : For every M ⊆ Rn, the space F(M) has
the bounded approximation property (BAP).
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Introduction - Background information Around some `1 properties A new family of examples

Little Lipschitz spaces and double duality results

Definition
Let (M, d) be a metric space. We define the two following closed
subspaces of Lip0(M) :

lip0(M) :=

{
f ∈ Lip0(M) : lim

ε→0
sup

0<d(x ,y)<ε

|f (x)− f (y)|
d(x , y)

= 0

}
,

S0(M) :=

f ∈ lip0(M) : lim
r→∞

sup
x or y /∈B(0,r)

x 6=y

|f (x)− f (y)|
d(x , y)

= 0

 .

Examples

i) lip0(R) = {0}, and also lip0(X ) = {0} for any Banach space X .
ii) lip0(N) = Lip0(N), and also lip0(D) = Lip0(D) for any

uniformly discrete metric space D.

8/20
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Introduction - Background information Around some `1 properties A new family of examples

Little Lipschitz spaces and double duality results

Definition
We say that a subspace S ⊆ Lip0(M) separates points uniformly
(S.P.U.) if there is a constant C ≥ 1 such that ∀x 6= y ∈ M,
∀ε > 0, ∃f ∈ S with ‖f ‖L ≤ C + ε and |f (x)− f (y)| = d(x , y).

(Kalton) : S ⊆ Lip0(M) S.P.U. with constant C if and only if S is a
C norming subspace of Lip(M) = F(M)∗, that is :

∀γ ∈ F(M), ‖γ‖ ≤ C sup
f ∈BS

|〈f , γ〉|.

Proposition (Weaver/Dalet)

i) Let (K , d) be a compact metric space then

lip0(K ) S.P.U.⇔ lip0(K )∗ = F(K ).

ii) Let (M, d) be a proper metric space then

S0(M) S.P.U.⇔ S0(M)∗ = F(M).
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Introduction - Background information Around some `1 properties A new family of examples

Little Lipschitz spaces and double duality results

Examples

For M as follows, lip0(M) (resp. S0(M)) is 1-norming :

i) (Dalet) : M countable compact (resp. countable proper) metric
space.

ii) (Dalet) : M ultrametric compact (resp. countable proper)
metric space.

iii) (Kalton) : (M, ω ◦ d) where ω is a nontrivial gauge (typically
ω(t) = tp with 0 < p < 1).

iv) (P.) : M some metric spaces originate from p-Banach spaces
(to be specified in the last section).
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Introduction - Background information Around some `1 properties A new family of examples

The Schur property

Definition
Let X be a Banach space. We say that X has the Schur property
if : ∀(xn)n ⊂ X , xn

ω−→
n→∞

0 =⇒ ‖xn‖ −→n→∞
0. (ω = σ(X ,X ∗))

Examples

i) `1 has the Schur property. (gliding hump argument)
ii) Infinite dimensional reflexive spaces are not Schur spaces.

Proposition
If a Banach space X has the Schur property, then it contains `1
hereditary.
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Introduction - Background information Around some `1 properties A new family of examples

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

i) (Kalton, 2004) : Consider (M, ω ◦ d) where (M, d) is a pointed
metric space and ω is a nontrivial gauge (typically ω(t) = tp

with 0 < p < 1). Then F(M, ω ◦ d) has the Schur property.
ii) (Hájek-Lancien-Pernecká, 2015) : Let K be a countable

compact metric space (resp. M proper m. s.). Then F(K )
(resp. F(M)) has the Schur property.

Proposition (P.)

Let (M, d) be a pointed metric space such that lip0(M) is
1-norming. Then F(M) has the Schur property.
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Introduction - Background information Around some `1 properties A new family of examples

A bit further, embeddings into `1-sums

Theorem (P.)

Let (M, d) be a proper pointed metric space. Assume that :
i) S0(M) S.P.U.
ii) F(M) has (MAP).
Then for every ε > 0, there exist (En)n a sequence of finite
dimensional subspaces of F(M) such that F(M) ↪→

1+ε
(
∑
⊕nEn)`1 .

Moreover the embedding is ω∗ to ω∗ continuous.
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A bit further, embeddings into `1-sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c0 with (MAP). Then for every ε > 0, there
exist (En)n a sequence of finite dimensional subspaces of V ∗ and a
ω∗ to ω∗ continuous linear map T : V ∗ → (

∑
⊕nEn)`1 such that :

∀x∗ ∈ V ∗ : (1− ε)‖x∗‖ ≤ ‖Tx∗‖ ≤ (1+ ε)‖x∗‖.

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every ε > 0, S0(M) is
(1+ ε)-isomorphic to a subsapce of c0.

Theorem (Grothendieck)

Let X be a Banach space. Then :
i) If X ∗ has (MAP) then X has (MAP).
ii) If X ∗ has (AP) then X ∗ has (MAP).

14/20
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Introduction - Background information Around some `1 properties A new family of examples

p-Banach spaces

Definition
Let X be a vector space over R. A quasi-norm is a map ‖ · ‖ :
X → R so that :

i) ∀x 6= 0 ∈ X : ‖x‖ > 0.
ii) ∀x ∈ X , ∀λ ∈ R : ‖λx‖ = |λ|‖x‖.
iii) ∀x , y ∈ X : ‖x + y‖ ≤ k(‖x‖+ ‖y‖) where k does not depend

on x and y .

Remarks
i) A quasi-norm define a locally bounded and so metrizable

topology.
ii) Conversely, if X is a locally bounded topological vector space,

we can define a quasi-norm on X : Pick B a bounded
neighbourhood of 0 and consider the Minkowski functional of
B : µB(x) = inf{λ ≥ 0 : λ−1x ∈ B}.

−→ Quasi-Banach = Quasi-normed + complete.

15/20
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p-Banach spaces

Definition
Let X be a vector space over R and 0 < p < 1. A p-norm is a map
‖ · ‖ : X → R so that :

i) ∀x 6= 0 ∈ X : ‖x‖ > 0.
ii) ∀x ∈ X , ∀λ ∈ R : ‖λx‖ = |λ|‖x‖.
iii) ∀x , y ∈ X : ‖x + y‖p ≤ (‖x‖+ ‖y‖)p.

Remarks
i) ‖ · ‖ p-norm =⇒ ‖ · ‖ quasi-norm.
ii) p-Banach = p-normed + complete.
iii) If (X , ‖ · ‖) is a p-normed space, then d : X ×X → R+ defined

by d(x , y) = ‖x − y‖p is a metric that define the topology of
X .

iv) (Aoki-Rolewicz) =⇒ Every quasi-normed space can be
renormed to be a p-Banach.

16/20
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p-Banach spaces

Examples (p-Banach)

i) `p with 0 < p < 1, for which we know that `∗p = `∞.

ii) Lp with 0 < p < 1, for which we know that L∗p = {0}.

Notations :
- `np = (Rn, ‖ · ‖p) −→ Mn

p := (Rn, ‖ · ‖pp) = (Rn, dp).
- `p −→ Mp := (`p, dp).
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Study of F(Mn
p ) and F(Mp)

Proposition (P.)

F(Mn
p ) = S0(Mn

p )
∗

Corollary (P.)

Then for every ε > 0, there exist (En)n a sequence of finite
dimensional subspaces of F(Mn

p ) such that
F(Mn

p ) ↪→1+ε (
∑
⊕nEn)`1 . Moreover the embedding is ω∗ to ω∗

continuous.

Those two results remain true for every finite dimensional p-Banach
spaces. Moreover we have the following.

Proposition (P.)

Let Xp be a p-Banach space which admits a monotone FDD (`p for
example). We denote Mp = (Xp, dp). Then lip0(M) is 1-norming
and thus F(Mp) has the Schur property. Moreover F(Mp) has
(MAP).
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Some questions

Questions
i) Mp = (`p, dp) isometric to a dual ?

F(Mp) ↪→ (
∑
⊕nEn)`1 ?

F(Mp) admits a Shauder basis ?
ii) Xp = Lp and Mp = (Lp, dp), Structure of F(Mp) ? w.s.c ?

Containment of c0 ? Schur ? (RNP) ? Containment of L1 ?
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