Around some ℓ_1 properties 0000

A new family of examples

Schur properties over some Lipschitz free-spaces

Colin PETITJEAN

Séminaire d'Analyse fonctionnelle du LMB, 10/01/2017

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (

Around some ℓ_1 properties

A new family of examples

- Introduction Background information
 - Lipschitz free-spaces, basic properties
 - Some recent results
 - Little Lipschitz spaces and double duality results
- **(2)** Around some ℓ_1 properties
 - The Schur property
 - A bit further, embeddings into ℓ_1 -sums
- A new family of examples
 - *p*-Banach spaces
 - Study of $\mathcal{F}(M_p^n)$ and $\mathcal{F}(M_p)$
 - Some questions

Around some ℓ_1 properties 0000

A new family of examples

Lipschitz free-spaces, basic properties

(M, d) pointed metric space with origin 0

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

(M, d) pointed metric space with origin 0 $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$

Around some ℓ_1 properties

A new family of examples 000000

イロト イポト イモト イモト 二日

3/20

Lipschitz free-spaces, basic properties

$$(M, d) \text{ pointed metric space with origin 0} Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\} \|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)} \text{ (Best Lipschitz constant of f)}$$

Around some ℓ_1 properties

A new family of examples 000000

イロト イポト イモト イモト 二日

3/20

Lipschitz free-spaces, basic properties

$$(M, d) \text{ pointed metric space with origin 0} \\ Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\} \\ \|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)} \text{ (Best Lipschitz constant of f)} \\ (Lip_0(M), \|\cdot\|_L) \text{ Banach space.}$$

Around some ℓ_1 properties

A new family of examples 000000

イロト イポト イモト イモト 二日

3/20

Lipschitz free-spaces, basic properties

$$\begin{array}{l} (M,d) \text{ pointed metric space with origin 0} \\ Lip_0(M) &= \{f: M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\} \\ \|f\|_L &= \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x,y)} \ (\textit{Best Lipschitz constant of } f) \\ (Lip_0(M), \|\cdot\|_L) \text{ Banach space.} \\ \text{For } x \in M, \text{ define } \delta_M(x) \in Lip_0(M)^* \text{ by } \langle \delta_M(x), f \rangle = f(x). \end{array}$$

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

$$\begin{array}{l} (M,d) \text{ pointed metric space with origin 0} \\ Lip_0(M) &= \{f: M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\} \\ \|f\|_L &= \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x,y)} \ (\textit{Best Lipschitz constant of } f) \\ (Lip_0(M), \|\cdot\|_L) \text{ Banach space.} \\ \text{For } x \in M, \text{ define } \delta_M(x) \in Lip_0(M)^* \text{ by } \langle \delta_M(x), f \rangle = f(x). \end{array}$$

Definition

 $\begin{array}{l} \mathsf{Lipschitz-free space over } M:\\ \mathcal{F}(M):=\overline{\mathsf{span}\left\{\delta_M(x)\,;\,x\in M\right\}}^{\|\cdot\|}\subset \mathit{Lip}_0(M)^*. \end{array}$

Around some ℓ_1 properties 0000

A new family of examples

Lipschitz free-spaces, basic properties

$$\begin{array}{l} (M,d) \text{ pointed metric space with origin 0} \\ Lip_0(M) &= \{f: M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\} \\ \|f\|_L &= \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x,y)} \ (Best \ Lipschitz \ constant \ of \ f) \\ (Lip_0(M), \|\cdot\|_L) \ Banach \ space. \\ \text{For } x \in M, \ \text{define } \delta_M(x) \in Lip_0(M)^* \ \text{by } \langle \delta_M(x), f \rangle = f(x). \end{array}$$

Definition

Lipschitz-free space over M : $\mathcal{F}(M) := \overline{\text{span} \{ \delta_M(x) ; x \in M \}}^{\|\cdot\|} \subset Lip_0(M)^*.$

Remark

 $\delta_M : x \in M \mapsto \delta_M(x) \in \mathcal{F}(M)$ is a non linear isometry.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry.

Remark

$$\mathcal{F}(M)^* = Lip_0(M).$$

Around some ℓ_1 properties

A new family of examples

4/20

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry.

Remark

 $\mathcal{F}(M)^* = Lip_0(M)$. Uniqueness of the predual for : m. s. of finite diameter and complete and convex m. s. (\Rightarrow Banach spaces) (Weaver, 2016)

Around some ℓ_1 properties

A new family of examples 000000

Lipschitz free-spaces, basic properties

Let M_1 and M_2 be two pointed metric spaces.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Let M_1 and M_2 be two pointed metric spaces. Let $L: M_1 \rightarrow M_2$ be a Lipschitz map.

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > の < の < 5/20

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Let M_1 and M_2 be two pointed metric spaces. Let $L: M_1 \to M_2$ be a Lipschitz map. There exist $\hat{L} : \mathcal{F}(M_1) \to \mathcal{F}(M_2)$ such that $\|\hat{L}\| = \|L\|_L$ and such that the following diagram commutes :

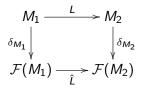
Around some ℓ_1 properties

A new family of examples

・ロト ・個ト ・ヨト ・ヨト - ヨ

Lipschitz free-spaces, basic properties

Let M_1 and M_2 be two pointed metric spaces. Let $L: M_1 \to M_2$ be a Lipschitz map. There exist $\hat{L} : \mathcal{F}(M_1) \to \mathcal{F}(M_2)$ such that $\|\hat{L}\| = \|L\|_L$ and such that the following diagram commutes :



where δ_{M_i} is the isometry defined above :

$$\delta_{M_i}: x \in M_i \mapsto \delta_{M_i}(x) \in \mathcal{F}(M_i).$$

Around some ℓ_1 properties 0000

A new family of examples 000000

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

<ロト < 部 > < 言 > < 言 > こ き く こ > う へ () 6/20

Around some ℓ_1 properties 0000

A new family of examples 000000

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

<ロト < 部 > < 言 > < 言 > こ き く こ > う へ () 6/20

Around some ℓ_1 properties 0000

A new family of examples 000000

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

iii)
$$\mathcal{F}(\mathbb{R}^2) = ?$$

Around some ℓ_1 properties 0000

A new family of examples 000000

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii)
$$\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$$

iii)
$$\mathcal{F}(\mathbb{R}^2) = ?$$

iv)
$$\mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)$$
?

Around some ℓ_1 properties 0000

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii)
$$\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$$

iii)
$$\mathcal{F}(\mathbb{R}^2) = ?$$

iv)
$$\mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)$$
?

Godefroy - Kalton program :

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > の < の < 6/20

Around some ℓ_1 properties 0000

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

iii)
$$\mathcal{F}(\mathbb{R}^2) = ?$$

$$\text{iv}) \ \mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3) \, ? \\$$

Godefroy - Kalton program :

Around some ℓ_1 properties

A new family of examples

6/20

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2) = ?$

$$\text{iv}) \ \mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3) \, ? \\$$

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

• Approximation properties : (AP), (BAP), (MAP).

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2) = ?$

$$\text{iv}) \ \mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3) \, ? \\$$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2) = ?$
iii) $\mathcal{F}(\mathbb{R}^2) = \mathcal{F}(\mathbb{R}^3)$

iv)
$$\mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)$$
?

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .

Around some ℓ_1 properties

A new family of examples

6/20

Lipschitz free-spaces, basic properties

Examples

- i) $\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$ ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$ iii) $\mathcal{F}(\mathbb{R}^2) = ?$ t) $\mathcal{T}(\mathbb{R}^2) = \mathcal{T}(\mathbb{R}^3)$
- $\mathsf{iv}) \ \mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3) \, ?$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c₀.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2) = ?$
iv) $\mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)?$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2) = ?$
iv) $\mathcal{T}(\mathbb{R}^2) = \mathcal{T}(\mathbb{R}^3)$

$$\mathbb{V} \mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)$$

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Simple spaces?

Around some ℓ_1 properties

A new family of examples

Lipschitz free-spaces, basic properties

Examples

i) $\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$ ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$ iii) $\mathcal{F}(\mathbb{R}^2) = ?$ iii) $\mathcal{F}(\mathbb{R}^2) = \mathcal{T}(\mathbb{R}^3)$

iv) $\mathcal{F}(\mathbb{R}^2) \simeq \mathcal{F}(\mathbb{R}^3)$?

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Simple spaces ?Compact m. s., Proper m. s., Finite dimensional Banach spaces with any norm $\longrightarrow \ell_1, c_0...$

6/20

Around some ℓ_1 properties

A new family of examples

Some recent results

Around some ℓ_1 properties 0000

A new family of examples

Some recent results

Here is a Listing (non exhaustive) of some recent result about $\mathcal{F}(\mathbb{R}^n)$:

• (Naor - Schechtman) : For any measure μ , $\mathcal{F}(\mathbb{R}^2) \not\hookrightarrow L_1(\mu)$.

Around some ℓ_1 properties 0000

A new family of examples

Some recent results

- (Naor Schechtman) : For any measure μ , $\mathcal{F}(\mathbb{R}^2) \not\hookrightarrow L_1(\mu)$.
- (Cúth Doucha Wojtaszczyk) : If $M \subseteq R^d$ then $\mathcal{F}(M)$ is w.s.c. In particular $c_0 \nleftrightarrow \mathcal{F}(M)$.

Around some ℓ_1 properties 0000

A new family of examples

Some recent results

- (Naor Schechtman) : For any measure μ , $\mathcal{F}(\mathbb{R}^2) \not\hookrightarrow L_1(\mu)$.
- (Cúth Doucha Wojtaszczyk) : If $M \subseteq R^d$ then $\mathcal{F}(M)$ is w.s.c. In particular $c_0 \nleftrightarrow \mathcal{F}(M)$.
- (Pernecká -Hájek) : *F*(*Rⁿ*) has a Schauder basis. Moreover, for every *M* ⊆ *Rⁿ* bounded and every and convex, *F*(*M*) has the Schauder basis as well.

Around some ℓ_1 properties

A new family of examples

Some recent results

- (Naor Schechtman) : For any measure μ , $\mathcal{F}(\mathbb{R}^2) \not\hookrightarrow L_1(\mu)$.
- (Cúth Doucha Wojtaszczyk) : If $M \subseteq R^d$ then $\mathcal{F}(M)$ is w.s.c. In particular $c_0 \nleftrightarrow \mathcal{F}(M)$.
- (Pernecká -Hájek) : $\mathcal{F}(\mathbb{R}^n)$ has a Schauder basis. Moreover, for every $M \subseteq \mathbb{R}^n$ bounded and every and convex, $\mathcal{F}(M)$ has the Schauder basis as well.
- (Lancien Pernecká) : For every $M \subseteq \mathbb{R}^n$, the space $\mathcal{F}(M)$ has the bounded approximation property (BAP).

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

<ロト < 部 ト < 言 ト < 言 ト 三 の < @ 8/20

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_0(M) := \left\{ f \in lip_0(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{\text{or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_{0}(M) := \left\{ f \in Lip_{0}(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_{0}(M) := \left\{ f \in lip_{0}(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Examples

i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_{0}(M) := \left\{ f \in Lip_{0}(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_{0}(M) := \left\{ f \in lip_{0}(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Examples

- i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.
- ii) $lip_0(\mathbb{N}) = Lip_0(\mathbb{N})$, and also $lip_0(D) = Lip_0(D)$ for any uniformly discrete metric space D.

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0$, $\exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

Around some ℓ_1 properties

A new family of examples

9/20

・ロト ・ 何ト ・ ヨト ・

Little Lipschitz spaces and double duality results

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0, \exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

(Kalton) : $S \subseteq Lip_0(M)$ S.P.U. with constant C if and only if S is a C norming subspace of $Lip(M) = \mathcal{F}(M)^*$, that is :

$$\forall \gamma \in \mathcal{F}(M), \ \|\gamma\| \leq C \sup_{f \in B_{\mathcal{S}}} |\langle f, \gamma \rangle|.$$

Around some ℓ_1 properties

A new family of examples

Little Lipschitz spaces and double duality results

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0, \exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

(Kalton) : $S \subseteq Lip_0(M)$ S.P.U. with constant C if and only if S is a C norming subspace of $Lip(M) = \mathcal{F}(M)^*$, that is :

$$\forall \gamma \in \mathcal{F}(M), \ \|\gamma\| \leq C \sup_{f \in B_{\mathcal{S}}} |\langle f, \gamma \rangle|.$$

Proposition (Weaver/Dalet)

i) Let (K, d) be a compact metric space then

 $lip_0(K)$ S.P.U. \Leftrightarrow $lip_0(K)^* = \mathcal{F}(K)$.

ii) Let (M, d) be a proper metric space then

 $S_0(M)$ $S.P.U. \Leftrightarrow S_0(M)^* = \mathcal{F}(M).$

୦.୦.୦ ୨/20

Introduction - Background information	Around some <i>l</i> ¹ properties	A new family of examples
Little Lipschitz spaces and double duality results		



Introduction - Background information	Around some ℓ_1 properties	A new family of example
Little Lipschitz spaces and double duality results		

For *M* as follows, $lip_0(M)$ (resp. $S_0(M)$) is 1-norming :

i) (Dalet) : *M* countable compact (resp. countable proper) metric space.

Introduction - Background information	Around some <i>l</i> 1 properties	A new family of example
Little Lipschitz spaces and double duality results		

- i) (Dalet) : *M* countable compact (resp. countable proper) metric space.
- ii) (Dalet) : *M* ultrametric compact (resp. countable proper) metric space.

Introduction - Background information	Around some <i>l</i> ¹ properties	A new family of examples
Little Lipschitz spaces and double duality results		

- i) (Dalet) : *M* countable compact (resp. countable proper) metric space.
- ii) (Dalet) : *M* ultrametric compact (resp. countable proper) metric space.
- iii) (Kalton) : $(M, \omega \circ d)$ where ω is a nontrivial gauge (typically $\omega(t) = t^p$ with 0).

Introduction - Background information	Around some <i>l</i> 1 properties	A new family of examples
Little Lipschitz spaces and double duality results		

- i) (Dalet) : *M* countable compact (resp. countable proper) metric space.
- ii) (Dalet) : *M* ultrametric compact (resp. countable proper) metric space.
- iii) (Kalton) : $(M, \omega \circ d)$ where ω is a nontrivial gauge (typically $\omega(t) = t^p$ with 0).
- iv) (P.) : *M* some metric spaces originate from *p*-Banach spaces (to be specified in the last section).

Around some ℓ_1 properties $\bullet \circ \circ \circ$

A new family of examples

◆□→ ◆圖→ ◆注→ ◆注→

11/20

The Schur property

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. \ (\omega = \sigma(X, X^*))$

Around some ℓ_1 properties $\bullet \circ \circ \circ$

A new family of examples

The Schur property

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. \ (\omega = \sigma(X, X^*))$

Examples

i) ℓ_1 has the Schur property. (gliding hump argument)

Around some ℓ_1 properties $\bullet \circ \circ \circ$

A new family of examples

The Schur property

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Examples

- i) ℓ_1 has the Schur property. (gliding hump argument)
- ii) Infinite dimensional reflexive spaces are not Schur spaces.

Proposition

If a Banach space X has the Schur property, then it contains ℓ_1 hereditary.

Around some ℓ_1 properties $0 \bullet 0 \circ$

A new family of examples 000000

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

<ロト < 部ト < 目ト < 目ト 目 のへの 12/20

The Schur property

Around some ℓ_1 properties $0 \bullet 00$

A new family of examples

Literature : Schur property over some Lipschitz-free spaces :

i) (Kalton, 2004) : Consider (M, ω ∘ d) where (M, d) is a pointed metric space and ω is a nontrivial gauge (typically ω(t) = t^p with 0

Around some ℓ_1 properties $0 \bullet 00$

A new family of examples

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

- i) (Kalton, 2004) : Consider (M, ω ∘ d) where (M, d) is a pointed metric space and ω is a nontrivial gauge (typically ω(t) = t^p with 0
- ii) (Hájek-Lancien-Pernecká, 2015) : Let K be a countable compact metric space (resp. *M* proper m. s.). Then *F*(*K*) (resp. *F*(*M*)) has the Schur property.

Around some ℓ_1 properties $0 \bullet 00$

A new family of examples

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

- i) (Kalton, 2004) : Consider (M, ω ∘ d) where (M, d) is a pointed metric space and ω is a nontrivial gauge (typically ω(t) = t^p with 0
- ii) (Hájek-Lancien-Pernecká, 2015) : Let K be a countable compact metric space (resp. *M* proper m. s.). Then *F*(*K*) (resp. *F*(*M*)) has the Schur property.

Proposition (P.)

Let (M, d) be a pointed metric space such that $lip_0(M)$ is 1-norming. Then $\mathcal{F}(M)$ has the Schur property.

Around some ℓ_1 properties $\circ \circ \bullet \circ$

A new family of examples

A bit further, embeddings into ℓ_1 -sums

Theorem (P.)

Let (M, d) be a proper pointed metric space. Assume that :

- i) $S_0(M)$ S.P.U.
- ii) $\mathcal{F}(M)$ has (MAP).

Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of $\mathcal{F}(M)$ such that $\mathcal{F}(M) \underset{1+\varepsilon}{\hookrightarrow} (\sum \bigoplus_n E_n)_{\ell_1}$. Moreover the embedding is ω^* to ω^* continuous.

Around some ℓ_1 properties $\circ \circ \circ \bullet$

A new family of examples

A bit further, embeddings into ℓ_1 -sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that :

$$orall x^* \in V^*$$
: $(1-arepsilon) \|x^*\| \le \|\mathcal{T}x^*\| \le (1+arepsilon) \|x^*\|$

Around some ℓ_1 properties $\circ \circ \circ \bullet$

A new family of examples

A bit further, embeddings into ℓ_1 -sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that :

$$orall x^* \in V^*$$
: $(1-arepsilon) \|x^*\| \le \|\mathcal{T}x^*\| \le (1+arepsilon) \|x^*\|$

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every $\varepsilon > 0$, $S_0(M)$ is $(1 + \varepsilon)$ -isomorphic to a subsapce of c_0 .

Around some ℓ_1 properties $\circ \circ \circ \bullet$

A new family of examples

A bit further, embeddings into ℓ_1 -sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that :

$$orall x^* \in V^*$$
: $(1 - arepsilon) \|x^*\| \le \|\mathcal{T}x^*\| \le (1 + arepsilon) \|x^*\|$

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every $\varepsilon > 0$, $S_0(M)$ is $(1 + \varepsilon)$ -isomorphic to a subsapce of c_0 .

Theorem (Grothendieck)

Let X be a Banach space. Then :

- i) If X^* has (MAP) then X has (MAP).
- ii) If X^* has (AP) then X^* has (MAP).

うへで 14/20

Around some ℓ_1 properties

A new family of examples ••••••

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

<ロト < 部ト < 目ト < 目ト 目 のへの 15/20

Around some ℓ_1 properties

A new family of examples ••••••

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

Around some ℓ_1 properties 0000

A new family of examples ••••••

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda|||x||.$$

Around some ℓ_1 properties 0000

A new family of examples ••••••

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda|||x||.$$

iii) $\forall x, y \in X : ||x + y|| \le k(||x|| + ||y||)$ where k does not depend on x and y.

Around some ℓ_1 properties 0000

A new family of examples ••••••

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X$$
, $\forall \lambda \in \mathbb{R} : \|\lambda x\| = |\lambda| \|x\|$.

iii) $\forall x, y \in X : ||x + y|| \le k(||x|| + ||y||)$ where k does not depend on x and y.

Remarks

i) A quasi-norm define a locally bounded and so metrizable topology.

э

< ロ > < 得 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Around some ℓ_1 properties 0000

A new family of examples •00000

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} . A quasi-norm is a map $\|\cdot\|$: $X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X$$
, $\forall \lambda \in \mathbb{R} : \|\lambda x\| = |\lambda| \|x\|$.

iii) $\forall x, y \in X : ||x + y|| \le k(||x|| + ||y||)$ where k does not depend on x and y.

Remarks

- A quasi-norm define a locally bounded and so metrizable topology.
- ii) Conversely, if X is a locally bounded topological vector space, we can define a quasi-norm on X : Pick B a bounded neighbourhood of 0 and consider the Minkowski functional of B : μ_B(x) = inf{λ ≥ 0 : λ⁻¹x ∈ B}.

 \rightarrow Quasi-Banach = Quasi-normed + complete.

15/20

→ ∃ →

 $* \equiv >$

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} and 0 . A*p* $-norm is a map <math>\|\cdot\| : X \to \mathbb{R}$ so that :

<ロト < 部ト < 目ト < 目ト 目 のへの 16/20

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over $\mathbb R$ and 0 A <math display="inline">p-norm is a map $\|\cdot\|: X \to \mathbb R$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} and $0 . A p-norm is a map <math>\|\cdot\| : X \to \mathbb{R}$ so that : i) $\forall x \neq 0 \in X : \|x\| > 0$.

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda|||x||.$$

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} and 0 . A*p* $-norm is a map <math>\|\cdot\| : X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| ||x||.$$

iii)
$$\forall x, y \in X : ||x + y||^p \le (||x|| + ||y||)^p$$
.

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over $\mathbb R$ and 0 A <math display="inline">p-norm is a map $\|\cdot\|: X \to \mathbb R$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda|||x||.$$

iii)
$$\forall x, y \in X : ||x + y||^p \le (||x|| + ||y||)^p$$
.

Remarks

i)
$$\|\cdot\|$$
 p-norm $\implies \|\cdot\|$ quasi-norm.

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over $\mathbb R$ and 0 A <math display="inline">p-norm is a map $\|\cdot\|: X \to \mathbb R$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| ||x||.$$

iii)
$$\forall x, y \in X : ||x + y||^p \le (||x|| + ||y||)^p$$
.

Remarks

i)
$$\|\cdot\|$$
 p-norm $\implies \|\cdot\|$ quasi-norm.

```
ii) p-Banach = p-normed + complete.
```

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} and 0 . A*p* $-norm is a map <math>\|\cdot\| : X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| ||x||.$$

iii)
$$\forall x, y \in X : ||x + y||^p \le (||x|| + ||y||)^p$$
.

Remarks

i)
$$\|\cdot\|$$
 p-norm $\implies \|\cdot\|$ quasi-norm.

- ii) p-Banach = p-normed + complete.
- iii) If $(X, \|\cdot\|)$ is a *p*-normed space, then $d : X \times X \to \mathbb{R}_+$ defined by $d(x, y) = \|x y\|^p$ is a metric that define the topology of X.

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Definition

Let X be a vector space over \mathbb{R} and 0 . A*p* $-norm is a map <math>\|\cdot\| : X \to \mathbb{R}$ so that :

i)
$$\forall x \neq 0 \in X : ||x|| > 0.$$

ii)
$$\forall x \in X, \forall \lambda \in \mathbb{R} : ||\lambda x|| = |\lambda| ||x||.$$

iii)
$$\forall x, y \in X : ||x + y||^p \le (||x|| + ||y||)^p$$
.

Remarks

i)
$$\|\cdot\|$$
 p-norm $\implies \|\cdot\|$ quasi-norm.

- ii) p-Banach = p-normed + complete.
- iii) If $(X, \|\cdot\|)$ is a *p*-normed space, then $d : X \times X \to \mathbb{R}_+$ defined by $d(x, y) = \|x y\|^p$ is a metric that define the topology of X.
- iv) (Aoki-Rolewicz) \implies Every quasi-normed space can be renormed to be a *p*-Banach.

Around some ℓ_1 properties 0000

A new family of examples

p-Banach spaces

Examples (p-Banach)

i) ℓ_p with $0 , for which we know that <math>\ell_p^* = \ell_\infty$.

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Examples (p-Banach)

i) ℓ_p with $0 , for which we know that <math>\ell_p^* = \ell_\infty$.

ii) L_p with $0 , for which we know that <math>L_p^* = \{0\}$.

Notations :

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Examples (p-Banach)

- i) ℓ_p with $0 , for which we know that <math>\ell_p^* = \ell_\infty$.
- ii) L_p with $0 , for which we know that <math>L_p^* = \{0\}$.

Notations :

$$-\ell_p^n = (\mathbb{R}^n, \|\cdot\|_p) \longrightarrow M_p^n := (\mathbb{R}^n, \|\cdot\|_p^p) = (\mathbb{R}^n, d_p).$$

Around some ℓ_1 properties

A new family of examples

p-Banach spaces

Examples (p-Banach)

- i) ℓ_p with $0 , for which we know that <math>\ell_p^* = \ell_\infty$.
- ii) L_p with $0 , for which we know that <math>L_p^* = \{0\}$.

Notations :

$$- \ell_p^n = (\mathbb{R}^n, \|\cdot\|_p) \longrightarrow M_p^n := (\mathbb{R}^n, \|\cdot\|_p^p) = (\mathbb{R}^n, d_p).$$

$$- \ell_p \longrightarrow M_p := (\ell_p, d_p).$$

<ロト <部ト < 目ト < 目ト 目 のQで 17/20

Around some ℓ_1 properties 0000

A new family of examples

Study of $\mathcal{F}(M_p^n)$ and $\mathcal{F}(M_p)$

Proposition (P.)

$$\mathcal{F}(M_p^n) = S_0(M_p^n)^*$$

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 18/20

Around some ℓ_1 properties

A new family of examples

Study of $\mathcal{F}(M_p^n)$ and $\mathcal{F}(M_p)$

$$\mathcal{F}(M_p^n) = S_0(M_p^n)^*$$

Corollary (P.)

Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of $\mathcal{F}(M_p^n)$ such that $\mathcal{F}(M_p^n) \underset{1+\varepsilon}{\hookrightarrow} (\sum \oplus_n E_n)_{\ell_1}$. Moreover the embedding is ω^* to ω^* continuous.

Around some ℓ_1 properties

A new family of examples

Study of $\mathcal{F}(M_p^n)$ and $\mathcal{F}(M_p)$

$$\mathcal{F}(M_p^n) = S_0(M_p^n)^*$$

Corollary (P.)

Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of $\mathcal{F}(M_p^n)$ such that $\mathcal{F}(M_p^n) \underset{1+\varepsilon}{\hookrightarrow} (\sum \oplus_n E_n)_{\ell_1}$. Moreover the embedding is ω^* to ω^* continuous.

Those two results remain true for every finite dimensional p-Banach spaces. Moreover we have the following.

Around some ℓ_1 properties

A new family of examples

Study of $\mathcal{F}(M_p^n)$ and $\mathcal{F}(M_p)$

$$\mathcal{F}(M_p^n)=S_0(M_p^n)^*$$

Corollary (P.)

Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of $\mathcal{F}(M_p^n)$ such that $\mathcal{F}(M_p^n) \underset{1+\varepsilon}{\hookrightarrow} (\sum \bigoplus_n E_n)_{\ell_1}$. Moreover the embedding is ω^* to ω^* continuous.

Those two results remain true for every finite dimensional p-Banach spaces. Moreover we have the following.

Proposition (P.)

Let X_p be a p-Banach space which admits a monotone FDD (ℓ_p for example). We denote $M_p = (X_p, d_p)$. Then $lip_0(M)$ is 1-norming and thus $\mathcal{F}(M_p)$ has the Schur property. Moreover $\mathcal{F}(M_p)$ has (MAP).

Around some ℓ_1 properties

A new family of examples

Some questions

Questions

i) $M_p = (\ell_p, d_p)$ isometric to a dual?

<ロト < 部 ト < 言 ト < 言 ト 三 の < @ 19/20

Around some ℓ_1 properties

A new family of examples

Some questions

Questions

i) $M_p = (\ell_p, d_p)$ isometric to a dual? $\mathcal{F}(M_p) \hookrightarrow (\sum \oplus_n E_n)_{\ell_1}$?

<ロト < 部ト < 目ト < 目ト 目 のへの 19/20

Around some ℓ_1 properties 0000

A new family of examples

Some questions

Questions

i) $M_p = (\ell_p, d_p)$ isometric to a dual? $\mathcal{F}(M_p) \hookrightarrow (\sum \oplus_n E_n)_{\ell_1}$? $\mathcal{F}(M_p)$ admits a Shauder basis?

Around some ℓ_1 properties

A new family of examples

<ロト <置ト < 差ト < 差ト = 差

19/20

Some questions

Questions

i) M_p = (ℓ_p, d_p) isometric to a dual? F(M_p) → (∑⊕_nE_n)_{ℓ1}? F(M_p) admits a Shauder basis?
ii) X_p = L_p and M_p = (L_p, d_p), Structure of F(M_p)?

Around some ℓ_1 properties

A new family of examples

<ロト <置ト < 差ト < 差ト = 差

19/20

Some questions

Questions

- i) M_p = (ℓ_p, d_p) isometric to a dual? F(M_p) → (∑⊕_nE_n)_{ℓ1}? F(M_p) admits a Shauder basis?
 ii) X_p = L_p and M_p = (L_p, d_p), Structure of F(M_p)? w.s.c?
- Containment of c_0 ?

Around some ℓ_1 properties

A new family of examples

<ロト <置ト < 差ト < 差ト = 差

19/20

Some questions

Questions

- i) M_p = (ℓ_p, d_p) isometric to a dual? F(M_p) → (∑⊕_nE_n)_{ℓ1}? F(M_p) admits a Shauder basis?
 ii) X_p = L_p and M_p = (L_p, d_p), Structure of F(M_p)? w.s.c?
- 1) $X_p = L_p$ and $M_p = (L_p, d_p)$, Structure of $\mathcal{F}(M_p)$? w.s.c. Containment of c_0 ? Schur?

Around some ℓ_1 properties

A new family of examples

Some questions

Questions

- i) $M_p = (\ell_p, d_p)$ isometric to a dual ? $\mathcal{F}(M_p) \hookrightarrow (\sum \oplus_n E_n)_{\ell_1}$? $\mathcal{F}(M_p)$ admits a Shauder basis ?
- ii) $X_p = L_p$ and $M_p = (L_p, d_p)$, Structure of $\mathcal{F}(M_p)$? w.s.c? Containment of c_0 ? Schur? (RNP)? Containment of L_1 ?

Around some ℓ_1 properties 0000

A new family of examples

Some questions

- G. Godefroy, A survey on Lipschitz-free Banach spaces, Comment. Math. 55 (2015), no. 2, 89-118.
- F. Albiac and N.J. Kalton, *Topics in Banach space theory*, Graduate Text in Mathematics 233, Springer-Verlag, New York 2006..
- N.J. Kalton, N.T. Peck and J. W. Roberts, An F-spaces sampler, London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984.
- C. Petitjean, Schur properties over some Lipschitz-free spaces, preprint. Available at http://arxiv.org/pdf/1603.01391.pdf.