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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

(M, d) pointed metric space with origin 0

Lip0(M) = {f : M → R Lipschitz : f (0) = 0}

‖f ‖L = sup
x 6=y∈M

|f (x)− f (y)|
d(x , y)

(Best Lipschitz constant of f )

(Lip0(M), ‖ · ‖L) Banach space.
For x ∈ M, de�ne δM(x) ∈ Lip0(M)∗ by 〈δM(x), f 〉 = f (x).

De�nition

Lipschitz-free space over M :

F(M) := span {δM(x) ; x ∈ M}‖·‖ ⊂ Lip0(M)∗.

Remark

δM : x ∈ M 7→ δM(x) ∈ F(M) is a non linear isometry.
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Proposition

The Lipschitz-free space F(M) has the following property :

∀X Banach, ∀ f : M → X Lipschitz, ∃! f : F(M)→ X with

‖f ‖ = ‖f ‖L and such that the following diagram commutes

M
f //� _

δM
��

X

F(M)
f

<<

The map f ∈ Lip0(M,X ) 7→ f ∈ L(F(M),X ) is an onto linear

isometry.

Remark

F(M)∗ = Lip0(M). Uniqueness of the predual for : m. s. of �nite
diameter and complete and convex m. s. (⇒ Banach spaces)
(Weaver, 2016)
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Let M1 and M2 be two pointed metric spaces.

Let L : M1 → M2 be a Lipschitz map.
There exist L̂ : F(M1)→ F(M2) such that ‖L̂‖ = ‖L‖L and such
that the following diagram commutes :

M1

L //

δM1
��

M2

δM2
��

F(M1)
L̂

// F(M2)

where δMi
is the isometry de�ned above :

δMi
: x ∈ Mi 7→ δMi

(x) ∈ F(Mi ).
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Introduction - Background information Around some `1 properties A new family of examples

Lipschitz free-spaces, basic properties

Examples

i) F(N) = `1(N)

ii) F(R) = L1(R)

Godefroy - Kalton program :

Study the behavior of F(M) for "simple spaces M", and look for
properties such as

Approximation properties : (AP), (BAP), (MAP).

Existence of Basis or FDD.

(RNP) / containment of L1.

weakly sequential completeness / containment of c0.

`1 properties : (Schur), (Strong Schur), containment of `1,
embeddings into `1 sums.

Simple spaces ?Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm −→ `1, c0...
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Introduction - Background information Around some `1 properties A new family of examples

Little Lipschitz spaces and double duality results

De�nition

Let (M, d) be a metric space. We de�ne the two following closed
subspaces of Lip0(M) :

lip0(M) :=

{
f ∈ Lip0(M) : lim

ε→0

sup
0<d(x ,y)<ε

|f (x)− f (y)|
d(x , y)

= 0

}
,

S0(M) :=

f ∈ lip0(M) : lim
r→∞

sup
x or y /∈B(0,r)

x 6=y

|f (x)− f (y)|
d(x , y)

= 0

 .

Examples

i) lip0(R) = {0}, and also lip0(X ) = {0} for any Banach space X .

ii) lip0(N) = Lip0(N), and also lip0(D) = Lip0(D) for any
uniformly discrete metric space D.
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Introduction - Background information Around some `1 properties A new family of examples

Little Lipschitz spaces and double duality results

De�nition

We say that a subspace S ⊆ Lip0(M) separates points uniformly
(S.P.U.) if there is a constant C ≥ 1 such that ∀x 6= y ∈ M,
∀ε > 0, ∃f ∈ S with ‖f ‖L ≤ C + ε and |f (x)− f (y)| = d(x , y).

(Kalton) : S ⊆ Lip0(M) S.P.U. with constant C if and only if S is a
C norming subspace of Lip(M) = F(M)∗, that is :

∀γ ∈ F(M), ‖γ‖ ≤ C sup
f ∈BS

|〈f , γ〉|.

Proposition (Weaver/Dalet)

i) Let (K , d) be a compact metric space then

lip0(K ) S.P.U.⇔ lip0(K )∗ = F(K ).

ii) Let (M, d) be a proper metric space then

S0(M) S.P.U.⇔ S0(M)∗ = F(M).

8/22
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Little Lipschitz spaces and double duality results

Examples

For M as follows, lip0(M) (resp. S0(M)) is 1-norming :

i) (Dalet) : M countable compact (resp. countable proper) metric
space.

ii) (Dalet) : M ultrametric compact (resp. countable proper)
metric space.

iii) (Kalton) : (M, ω ◦ d) where ω is a nontrivial gauge (typically
ω(t) = tp with 0 < p < 1).

iv) (P.) : M some metric spaces originate from p-Banach spaces
(to be speci�ed in the last section).
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Introduction - Background information Around some `1 properties A new family of examples

The Schur property

De�nition

Let X be a Banach space. We say that X has the Schur property
if : ∀(xn)n ⊂ X , xn

ω−→
n→∞

0 =⇒ ‖xn‖ −→
n→∞

0. (ω = σ(X ,X ∗))

Examples

i) `1 has the Schur property. (gliding hump argument)

ii) In�nite dimensional re�exive spaces are not Schur spaces.

Proposition

If a Banach space X has the Schur property, then it contains `1
hereditarily.
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Introduction - Background information Around some `1 properties A new family of examples

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

i) (Kalton, 2004) : Consider (M, ω ◦ d) where (M, d) is a pointed
metric space and ω is a nontrivial gauge (typically ω(t) = tp

with 0 < p < 1). Then F(M, ω ◦ d) has the Schur property.
ii) (Hájek-Lancien-Pernecká, 2015) : Let K be a countable

compact metric space (resp. M proper m. s.). Then F(K )
(resp. F(M)) has the Schur property.

Proposition (P.)

Let (M, d) be a pointed metric space such that lip0(M) is
1-norming. Then F(M) has the Schur property.
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Introduction - Background information Around some `1 properties A new family of examples

A bit further, embeddings into `1-sums

Theorem (P.)

Let (M, d) be a proper pointed metric space. Assume that :

i) S0(M) S.P.U.

ii) F(M) has (MAP).

Then for every ε > 0, there exist (En)n a sequence of �nite

dimensional subspaces of F(M) such that F(M) ↪→
1+ε

(
∑
⊕nEn)`1 .

Moreover the embedding is ω∗ to ω∗ continuous.

Proposition

There exist a compact countable metric space K such that F (K )
does not embed into `1.
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A bit further, embeddings into `1-sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c0 with (MAP). Then for every ε > 0, there
exist (En)n a sequence of �nite dimensional subspaces of V ∗ and a

ω∗ to ω∗ continuous linear map T : V ∗ → (
∑
⊕nEn)`1 such that :

∀x∗ ∈ V ∗ : (1− ε)‖x∗‖ ≤ ‖Tx∗‖ ≤ (1+ ε)‖x∗‖.

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every ε > 0, S0(M) is
(1+ ε)-isomorphic to a subsapce of c0.

Theorem (Grothendieck)

Let X be a Banach space. Then :

i) If X ∗ has (MAP) then X has (MAP).

ii) If X ∗ has (AP) then X ∗ has (MAP).
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A bit further, embeddings into `1-sums

Proof

(Kalton/Dalet) =⇒ S0(M) '
1+ε

Z ⊆ c0 =⇒ Z ∗ '
1+ε
F(M).

But F(M) has (MAP) so Z ∗ has (1+ ε)-(BAP).
(Gronthendieck)*2 =⇒ Z ∗ has (MAP) =⇒ Z has (MAP).
(G-K-L) =⇒ Z ∗ '

1+ε
F ⊆ (

∑
⊕nFn)`1 where Fn are �nite

dimensional subspaces of Z ∗.
Since Fn ⊆ Z ∗ and Z ∗ '

1+ε
F(M), for every n there exist

En ⊂ F(M) such that En '
1+ε

Fn and (
∑
⊕nEn)`1 '

1+ε
(
∑
⊕nFn)`1 .

Thus there exist E ⊂ (
∑
⊕nEn)`1 such that E '

1+ε
F .

To �nish, note that : F(M) '
1+ε

Z ∗ '
1+ε

F '
1+ε

E and each one of

this operator is ω∗-to-ω∗ continuous.
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Introduction - Background information Around some `1 properties A new family of examples

p-Banach spaces

De�nition

Let X be a vector space over R. A quasi-norm is a map ‖ · ‖ :
X → R so that :

i) ∀x 6= 0 ∈ X : ‖x‖ > 0.

ii) ∀x ∈ X , ∀λ ∈ R : ‖λx‖ = |λ|‖x‖.
iii) ∀x , y ∈ X : ‖x + y‖ ≤ k(‖x‖+ ‖y‖) where k does not depend

on x and y .

Remarks

i) A quasi-norm de�ne a locally bounded and so metrizable
topology.

ii) Conversely, if X is a locally bounded topological vector space,
we can de�ne a quasi-norm on X : Pick B a bounded
neighbourhood of 0 and consider the Minkowski functional of
B : µB(x) = inf{λ ≥ 0 : λ−1x ∈ B}.

−→ Quasi-Banach = Quasi-normed + complete.
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Introduction - Background information Around some `1 properties A new family of examples

p-Banach spaces

Examples (p-Banach)

i) `p with 0 < p < 1, for which we know that `∗p = `∞.

ii) Lp with 0 < p < 1, for which we know that L∗p = {0}.

Notations :

- `np = (Rn, ‖ · ‖p) −→ Mn
p := (Rn, ‖ · ‖pp) = (Rn, dp).

- `p −→ Mp := (`p, dp).
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Introduction - Background information Around some `1 properties A new family of examples

Study of F(Mn
p ) and F(Mp)

Proposition (P.)

F(Mn
p ) = S0(M

n
p )
∗

Corollary (P.)

Then for every ε > 0, there exist (En)n a sequence of �nite

dimensional subspaces of F(Mn
p ) such that

F(Mn
p ) ↪→

1+ε
(
∑
⊕nEn)`1 . Moreover the embedding is ω∗ to ω∗

continuous.

Those two results remain true for every �nite dimensional p-Banach
spaces.
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Introduction - Background information Around some `1 properties A new family of examples

Study of F(Mn
p ) and F(Mp)

Proof

Pick x 6= y ∈ Mn
p . For m ∈ N de�ne

ωm : t ∈ [0,∞) 7→ inf{sp +m(t − s) : 0 ≤ s ≤ t}. Then ωm is
continuous, non-decreasing, subadditive and ωm(t) −→

m→∞
tp.

Fact 1 : (Hölder's inequalities) ∀x ∈ Rn, ‖x‖1 ≤ ‖x‖p ≤ n
1−p
p ‖x‖1.

(`n
1
)∗ = `n∞ =⇒ ∃x∗ ∈ `n∞ such that ‖x‖∞ = 1 and

〈x∗, x − y〉 = ‖x − y‖1 ≥ n
p−1
p ‖x − y‖p.

F := n
1−p
p x∗ ∈ (`np)

∗, ‖F‖∞ = n
1−p
p and 〈F , x − y〉 ≥ ‖x − y‖p.

Fact 2 : ∃C > 1, ∀R > 0, ∃ϕ : Mn
p → Mn

p C-Lipschitz such that
ϕ = Id on B(0,R) and ϕ = 0 on Mn

p\B(0, 2R).
Fix R > 2max{‖x‖pp, ‖y‖pp} and consider the corresponding ϕ.
Now de�ne fm by : ∀z ∈ Mn

p ,
fm(z) = ωm(|F (ϕ(z))− F (y)|)− ωm(|F (y)|).
→ fm ∈ S0(M).
→ fm(x)− fm(y) −→

m→∞
‖x − y‖pp.
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m→∞
‖x − y‖pp.
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Study of F(Mn
p ) and F(Mp)

Proposition

Let (M, d) be a metric space. Assume that :

∀ x 6= y ∈ M, ∀ ε > 0, ∃N ⊆ M and T : M → N (1+ ε)-Lipschitz
such that lip0(N) is 1-norming for F(N), d(Tx , x) ≤ ε and

d(Ty , y) ≤ ε. Then lip0(M) is 1-norming.

Using the �nite dimensional case and previous result we obtain the
following.

Proposition (P.)

Let Xp be a p-Banach space which admits a monotone FDD (`p for

example). We denote Mp = (Xp, dp). Then lip0(M) is 1-norming

and thus F(Mp) has the Schur property. Moreover F(Mp) has
(MAP).
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Some questions

Questions

i) Mp = (`p, dp) isometric to a dual ?

F(Mp) ↪→ (
∑
⊕nEn)`1 ?

ii) Xp = Lp and Mp = (Lp, dp), Structure of F(Mp) ? w.s.c ?
Containment of c0 ? Schur ? (RNP) ? Containment of L1 ?
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