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(M, d) pointed metric space with origin 0
Lipo(M) = {f : M — R Lipschitz : f(0) = 0}

F(x)— F
IfllL = sup [0 = Fy)l (Best Lipschitz constant of f)
x#yeM d(Xay)
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Lipschitz free-spaces, basic properties

(M, d) pointed metric space with origin 0
Lipo(M) = {f : M — R Lipschitz : f(0) = 0}

F(x)— F
IfllL = sup [0 = Fy)l (Best Lipschitz constant of f)
x#yeM d(Xay)
(Lipo(M), ]| - ||1) Banach space.

For x € M, define op(x) € Lipo(M)* by (dpm(x), ) = f(x).

Definition

Lipschitz-free space over M :
F(M) :=span {dp(x); x € M}

W Lipo(M)*.

vt x € M — dp(x) € F(M) is a non linear isometry.
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Lipschitz free-spaces, basic properties

The Lipschitz-free space J (M) has the following property :
V' X Banach, Vf : M — X Lipschitz, 3' f : F(M) — X with
I|FIl = |If|l. and such that the following diagram commutes

%

F(M)

The map f € Lipg(M, X) — f € L(F(M), X) is an onto linear
isometry.

| A\

Remark

F(M)* = Lipo(M). Uniqueness of the predual for : m. s. of finite
diameter and complete and convex m. s. (= Banach spaces)
(Weaver, 2016)
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Lipschitz free-spaces, basic properties

Let My and M, be two pointed metric spaces.
Let L : My — M5 be a Lipschitz map.
There exist L : F(My) — F(M,) such that ||L|| = ||L||. and such

that the following diagram commutes :

M —Lt M,

oy l i‘s"/’z

f(Ml)Tf(Mz)

where 0y, is the isometry defined above :

5/\/7/ c x e M; — 5M;(X) S f(M,)
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ocooe

Lipschitz free-spaces, basic properties

@ F(N)=4(N)
@ F(R)=Li(R)

Godefroy - Kalton program :
Study the behavior of F(M) for "simple spaces M", and look for
properties such as

e Approximation properties : (AP), (BAP), (MAP).
e Existence of Basis or FDD.
@ (RNP) / containment of L;.

o weakly sequential completeness / containment of ¢.

@ (1 properties : (Schur), (Strong Schur), containment of ¢y,
embeddings into #; sums.
Simple spaces ?Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm — /1, ...
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Let (M, d) be a metric space. We define the two following closed
subspaces of Lipg(M) :

. . . o [f(x)—f(y)| _
lipo(M) = {f € Lipo(M) Elm 0<dsE>ljS/)<s dix,y) 7

- : [f(x) = f(y)|
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x#y
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Let (M, d) be a metric space. We define the two following closed
subspaces of Lipg(M) :

. . . o [f(x)—f(y)| _
lipo(M) = {f € Lipo(M) Elm 0<dsE>ljS/)<s dix,y) 7

- - [f(x) — f(y)|
M) =< f e lipg(M) : | L NP 4
So(M) € lipo(M) rggo“j:%g(o’r) ixy) 0
xFy

”
SENES

@ lipo(R) = {0}, and also lipg(X) = {0} for any Banach space X.

@ lipo(N) = Lipp(N), and also lipo(D) = Lipo(D) for any
uniformly discrete metric space D.
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Little Lipschitz spaces and double duality results

Definition

We say that a subspace S C Lipg(M) separates points uniformly
(S.P.U.) if there is a constant C > 1 such that Vx # y € M,

Ve >0, 3f € S with ||f|| < C+¢ and |f(x) — f(y)| = d(x,y).
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(S.P.U.) if there is a constant C > 1 such that Vx # y € M,
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C norming subspace of Lip(M) = F(M)*, that is :

vy € F(M), [l < C sup [(f,7)].
feBs
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oeo

Little Lipschitz spaces and double duality results

Definition

We say that a subspace S C Lipg(M) separates points uniformly
(S.P.U.) if there is a constant C > 1 such that Vx # y € M,
Ve >0, 3f € S with ||f||. < C+¢e and |f(x) — f(y)| = d(x,y).

(Kalton) : S C Lipg(M) S.P.U. with constant C if and only if S is a
C norming subspace of Lip(M) = F(M)*, that is :

vy € F(M), [l < C sup [(f,7)].
feBs

Proposition (Weaver/Dalet)

Q@ Let (K,d) be a compact metric space then
lipo(K) S.P.U. < lipg(K)* = F(K).

@ Let (M,d) be a proper metric space then

So(M) S.P.U. < So(M)* = F(M).
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Little Lipschitz spaces and double duality results

SEES

For M as follows, lipg(M) (resp. So(M)) is 1-norming :

9

@

(Dalet) : M countable compact (resp. countable proper) metric
space.

(Dalet) : M ultrametric compact (resp. countable proper)
metric space.

(Kalton) : (M,w o d) where w is a nontrivial gauge (typically
w(t) = tP with 0 < p < 1).

(P.) : M some metric spaces originate from p-Banach spaces
(to be specified in the last section).
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©0000 500

The Schur property

Let X be a Banach space. We say that X has the Schur property
if : V(xn)n C X, xn _% 0 = ||xnl| — 0. (w=0(X,X*))
n—o0 n—oo

| \

SENES

@ /1 has the Schur property. (gliding hump argument)

@ Infinite dimensional reflexive spaces are not Schur spaces.

\

Proposition

If a Banach space X has the Schur property, then it contains {1
hereditarily.
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Literature : Schur property over some Lipschitz-free spaces :

@ (Kalton, 2004) : Consider (M, w o d) where (M, d) is a pointed
metric space and w is a nontrivial gauge (typically w(t) = tP
with 0 < p < 1). Then F(M,w o d) has the Schur property.
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oce

The Schur property

Literature : Schur property over some Lipschitz-free spaces :

@ (Kalton, 2004) : Consider (M, w o d) where (M, d) is a pointed
metric space and w is a nontrivial gauge (typically w(t) = tP
with 0 < p < 1). Then F(M,w o d) has the Schur property.

@ (Hajek-Lancien-Pernecka, 2015) : Let K be a countable
compact metric space (resp. M proper m. s.). Then F(K)
(resp. F(M)) has the Schur property.

Proposition (P.)

Let (M, d) be a pointed metric space such that lipg(M) is
1-norming. Then F(M) has the Schur property.
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A bit further, embeddings into ¢3-sums

Theorem (P.)

Let (M, d) be a proper pointed metric space. Assume that :
Q So(M) S.PU.

@ F(M) has (MAP).

Then for every € > 0, there exist (E,), a sequence of finite
dimensional subspaces of F(M) such that F(M) b (O_®nEn)e, -
€

Moreover the embedding is w* to w* continuous.
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Theorem (P.)

Let (M, d) be a proper pointed metric space. Assume that :
Q So(M) S.PU.

@ F(M) has (MAP).

Then for every € > 0, there exist (E,), a sequence of finite
dimensional subspaces of F(M) such that F(M) b (O_®nEn)e, -
€

Moreover the embedding is w* to w* continuous.

Proposition

There exist a compact countable metric space K such that F(K)
does not embed into /1.
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A bit further, embeddings into ¢3-sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of ¢y with (MAP). Then for every € > 0, there
exist (E,)n a sequence of finite dimensional subspaces of V* and a
w* to w* continuous linear map T : V* — (> @®pEn)e, such that :

vxt e Vi (1 =e)|x || < [T < (1 + ) |Ix7l-

13/22



Around some {3 properties
oeo

A bit further, embeddings into ¢3-sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of ¢y with (MAP). Then for every € > 0, there
exist (E,)n a sequence of finite dimensional subspaces of V* and a
w* to w* continuous linear map T : V* — (> @®pEn)e, such that :

vxt e Vi (1 =e)|x || < [T < (1 + ) |Ix7l-

N
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If M is a proper metric space. Then for every ¢ > 0, So(M) is
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A bit further, embeddings into ¢3-sums

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of ¢y with (MAP). Then for every € > 0, there
exist (E,)n a sequence of finite dimensional subspaces of V* and a
w* to w* continuous linear map T : V* — (> @®pEn)e, such that :

vxt e Vi (1 =e)|x || < [T < (1 + ) |Ix7l-

N

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every ¢ > 0, So(M) is
(1 4 €)-isomorphic to a subsapce of ¢.

A

Theorem (Grothendieck)

Let X be a Banach space. Then :

@ If X* has (MAP) then X has (MAP).
@ If X* has (AP) then X* has (MAP).

| 13/22
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A bit further, embeddings into ¢3-sums

(Kalton/Dalet) — SO(I\/I) = Z Ce = Z* = F(M).
€
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A bit further, embeddings into ¢3-sums

(Kalton/Dalet) = So(M) a ZCq=72" = F(M).
€ €
But F(M) has (MAP) so Z* has (1 + )-(BAP).

14/22



Around some {3 properties
ooe

A bit further, embeddings into ¢3-sums

Proof
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Proof

(Kalton/Dalet) = So(M) a ZCq=72" = F(M).
€ €
But F(M) has (MAP) so Z* has (1 + )-(BAP).
(Gronthendieck)*2 = Z* has (MAP) = Z has (MAP).
(G-K-L) = Z* = F C (> ®nFn)e, where F, are finite
€

dimensional subspaces of Z*.
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A bit further, embeddings into ¢3-sums

(Kalton/Dalet) = Sp(M) ~ Z C oy = Z* ~ F(M).
&l

But F(M) has (MAP) so Z* has (1+¢)-(BAP).
(Gronthendieck)*2 = Z* has (MAP) = Z has (MAP).
(G-K-L) = Z* = F C (> ®nFn)e, where F, are finite

dimensional subspaces of Z*.
Since F, C Z* and Z* = F(M), for every n there exist

E, C F(M) such that E,7 ~ F and (> ®nE )gl ~ (Z@n Fn)e,
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&l

But (M) has (MAP) so Z* has (14 ¢)-(BAP).
(Gronthendieck)*2 = Z* has (MAP) = Z has (MAP).
(G-K-L) = Z* = F C (> ®nFn)e, where F, are finite

dimensional subspaces of Z*.
Since F, C Z* and Z* ~ F(M), for every n there exist

1+e

E, C F(M) such that E,7 ~ F,and (3 ®nE )gl o~ (ZEB,,
Thus there exist E C (> @,,E )¢, such that E = F
(3
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A bit further, embeddings into ¢3-sums

(Kalton/Dalet) = Sp(M) ~ Z C oy = Z* ~ F(M).
&l

But (M) has (MAP) so Z* has (14 ¢)-(BAP).
(Gronthendieck)*2 = Z* has (MAP) = Z has (MAP).
(G-K-L) = Z* = F C (> ®nFn)e, where F, are finite

dimensional subspaces of Z*.
Since F, C Z* and Z* ~ F(M), for every n there exist

1+e

E, C F(M) such that E,7 ~ F,and (3. ®,E )gl = (ZEB,, Fn)e, -
Thus there exist E C (> @,,E )¢, such that E = F
&
To finish, note that : F(M) = Z* ~ F ~ E and each one of
€

lia 1+e
this operator is w*-to-w™ continuous.
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Let X be a vector space over R. A quasi-norm is a map || - || :
X — R so that :
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| \

@ A quasi-norm define a locally bounded and so metrizable
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@ p-Banach = p-normed + complete.
@ If (X,]-|)is a p-normed space, then d : X x X — R

defined by d(x,y) = [|x — y||P is a metric that define the
topology of X.

@ (Aoki-Rolewicz) = Every quasi-normed space can be
renormed to be a p-Banach.
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Proposition (P.)

F(Mg) = So(Mp)*

Corollary (P.)

Then for every € > 0, there exist (E,)n a sequence of finite

dimensional subspaces of (M) such that

F(Mg) = (> @nEn)e,. Moreover the embedding is w* to w*
g

continuous.

Those two results remain true for every finite dimensional p-Banach
spaces.
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Proposition

Let (M, d) be a metric space. Assume that :
Vx#yeM,Ve>0,INCMand T :M— N (1+¢)-Lipschitz
such that lipg(N) is 1-norming for F(N), d(Tx, x) < e and
d(Ty,y) <e. Then lipg(M) is 1-norming.

Using the finite dimensional case and previous result we obtain the
following.

Proposition (P.)

Let X, be a p-Banach space which admits a monotone FDD (¢, for
example). We denote M, = (X,, dp). Then lipg(M) is 1-norming
and thus F(M,) has the Schur property. Moreover F(M),) has
(MAP).
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Comment. Math. 55 (2015), no. 2, 89-118.

@ F. Albiac and N.J. Kalton, Topics in Banach space theory,
Graduate Text in Mathematics 233, Springer-Verlag, New York
2006..

@ N.J. Kalton, N.T. Peck and J. W. Roberts, An F-spaces
sampler, London Mathematical Society Lecture Note Series,
89. Cambridge University Press, Cambridge, 1984.

@ C. Petitjean, Schur properties over some Lipschitz-free spaces,
preprint. Available at
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