Norm attainment in spaces of vector valued Lipschitz functions

Colin PETITJEAN

Journées de l'école doctorale Carnot-Pasteur 2017 Dijon, May 19, 2017

1/1

(M, d) and (N, d) pointed metric space with origin 0.

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces.

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$ $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$ $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)

 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$ $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)

 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$ $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)

 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

Definition

 $\begin{array}{l} \mathsf{Lipschitz-free space over } M:\\ \mathcal{F}(M):=\overline{\mathsf{span}\left\{\delta_M(x)\,;\,x\in M\right\}}^{\|\cdot\|}\subset \mathit{Lip}_0(M)^*. \end{array}$

<ロ> < 昂> < 臣> < 臣> < 臣 > 三 のへで 4/1

(M, d) and (N, d) pointed metric space with origin 0. X, Y, Z real Banach spaces. $Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$ $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)

 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

Definition

Lipschitz-free space over M: $\mathcal{F}(M) := \overline{\text{span} \{\delta_M(x); x \in M\}}^{\|\cdot\|} \subset Lip_0(M)^*.$

Remark

 $\delta_M : x \in M \mapsto \delta_M(x) \in \mathcal{F}(M)$ is a non linear isometry.

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with } \|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry. We write $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry. We write $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

Remark : For $X = \mathbb{R}$ we obtain : $Lip_0(M) \equiv \mathcal{F}(M)^*$.

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

▲ロト ▲圖ト ▲目ト ▲目ト 目 - のへで

6/1

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$?

6/1

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$

Godefroy - Kalton program :

2

<ロト < 部 > < 言 > < 言 > こ き く る へ の へ の 6/1

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$

Godefroy - Kalton program :

Explore the linear structure of $\mathcal{F}(M)$ for "simple spaces M".

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$

Godefroy - Kalton program :

Explore the linear structure of $\mathcal{F}(M)$ for "simple spaces M". Simple spaces ?

<ロト < 部 > < 目 > < 目 > 目 の Q () 6/1

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$

Godefroy - Kalton program :

Explore the linear structure of $\mathcal{F}(M)$ for "simple spaces M". Simple spaces? Compact m. s., Proper m. s., Finite dimensional Banach spaces with any norm $\longrightarrow \ell_1, c_0...$

i)
$$\mathcal{F}(\mathbb{N}) \equiv \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) \equiv L_1(\mathbb{R})$
iii) $\mathcal{F}(\mathbb{R}^2)$? $\mathcal{F}(\mathbb{R}^3)$?

Godefroy - Kalton program :

Explore the linear structure of $\mathcal{F}(M)$ for "simple spaces M". Simple spaces? Compact m. s., Proper m. s., Finite dimensional Banach spaces with any norm $\longrightarrow \ell_1, c_0...$ Motivation :

Nonlinear classification of Banach spaces

Little Lipschitz spaces and double duality result

<ロ> < 部> < 言> < 言> と言う と言う とうのので 7/1

Let (M, d) be a metric space. We define the following closed subspace of $Lip_0(M)$:

Let (M, d) be a metric space. We define the following closed subspace of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Let (M, d) be a metric space. We define the following closed subspace of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

We say that $lip_0(M)$ separates points uniformly (SPU) if there is a constant $C \ge 1$ such that $\forall x \ne y \in M$, $\exists f \in lip_0(M)$ with $\|f\|_L \le C$ and |f(x) - f(y)| = d(x, y).

Let (M, d) be a metric space. We define the following closed subspace of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

We say that $lip_0(M)$ separates points uniformly (SPU) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\exists f \in lip_0(M)$ with $\|f\|_L \le C$ and |f(x) - f(y)| = d(x, y).

Examples (Trivial)

i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.

Let (M, d) be a metric space. We define the following closed subspace of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

We say that $lip_0(M)$ separates points uniformly (SPU) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\exists f \in lip_0(M)$ with $\|f\|_L \le C$ and |f(x) - f(y)| = d(x, y).

Examples (Trivial)

- i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.
- ii) $lip_0(\mathbb{N}) = Lip_0(\mathbb{N})$, and also $lip_0(D) = Lip_0(D)$ for any uniformly discrete metric space D.

Let (M, d) be a compact metric space then

$$lip_0(M)$$
 S.P.U. \Leftrightarrow $lip_0(M)^* = \mathcal{F}(M)$.

Let (M, d) be a compact metric space then

$$lip_0(M)$$
 S.P.U. $\Leftrightarrow lip_0(M)^* = \mathcal{F}(M).$

(P. \implies In this case, $\mathcal{F}(M)$ has the Schur property and sometimes even better)

Let (M, d) be a compact metric space then

```
lip_0(M) S.P.U. \Leftrightarrow lip_0(M)^* = \mathcal{F}(M).
```

 $(P. \implies$ In this case, $\mathcal{F}(M)$ has the Schur property and sometimes even better)

Examples (Nontrivial)

For M as follows, $lip_0(M)$ SPU :

Let (M, d) be a compact metric space then

```
lip_0(M) S.P.U. \Leftrightarrow lip_0(M)^* = \mathcal{F}(M).
```

 $(P. \implies$ In this case, $\mathcal{F}(M)$ has the Schur property and sometimes even better)

Examples (Nontrivial)

For M as follows, $lip_0(M)$ SPU :

i) (Weaver) : *M* the middle-third Cantor set.

Let (M, d) be a compact metric space then

```
lip_0(M) S.P.U. \Leftrightarrow lip_0(M)^* = \mathcal{F}(M).
```

 $(P. \implies$ In this case, $\mathcal{F}(M)$ has the Schur property and sometimes even better)

Examples (Nontrivial)

For M as follows, $lip_0(M)$ SPU :

- i) (Weaver) : M the middle-third Cantor set.
- ii) (Godefroy) : M "small" Cantor set.

Let (M, d) be a compact metric space then

```
lip_0(M) S.P.U. \Leftrightarrow lip_0(M)^* = \mathcal{F}(M).
```

 $(P. \Longrightarrow In this case, \mathcal{F}(M)$ has the Schur property and sometimes even better)

Examples (Nontrivial)

For M as follows, $lip_0(M)$ SPU :

- i) (Weaver) : *M* the middle-third Cantor set.
- ii) (Godefroy) : M "small" Cantor set.
- iii) (Dalet) : M countable compact.

- 3

Let (M, d) be a compact metric space then

```
lip_0(M) S.P.U. \Leftrightarrow lip_0(M)^* = \mathcal{F}(M).
```

 $(P. \implies$ In this case, $\mathcal{F}(M)$ has the Schur property and sometimes even better)

Examples (Nontrivial)

For M as follows, $lip_0(M)$ SPU :

- i) (Weaver) : M the middle-third Cantor set.
- ii) (Godefroy) : *M* "small" Cantor set.
- iii) (Dalet) : *M* countable compact.
- iv) "Many other families of examples..."

10/1

$- \mathcal{NA}(X, Y) := \{ T \in \mathcal{L}(X, Y) : \exists x \in B_X, \|L(x)\|_Y = \|T\| \}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー わらぐ

11/1

$$- \mathcal{NA}(X, Y) := \{ T \in \mathcal{L}(X, Y) : \exists x \in B_X, \|L(x)\|_Y = \|T\| \}.$$

$$- Lip_{SNA}(M, Y) := \{ f \in Lip_0(M, Y) : \exists x \neq y \in M,$$

$$f(x) - f(y) = \|f\|_Y d(x, y) \}.$$

(□) (@) (E) (E) [E]

11/1

$$- \mathcal{NA}(X, Y) := \{ T \in \mathcal{L}(X, Y) : \exists x \in B_X, \| L(x) \|_Y = \| T \| \}.$$

- $Lip_{SNA}(M, Y) := \{ f \in Lip_0(M, Y) : \exists x \neq y \in M,$
 $f(x) - f(y) = \| f \|_Y d(x, y) \}.$

Theorem (Bishop - Phelps)

$$\overline{\mathcal{NA}(X,\mathbb{R})}^{\|\cdot\|} = \mathcal{L}(X,\mathbb{R}) = X^*$$

$$- \mathcal{NA}(X, Y) := \{ T \in \mathcal{L}(X, Y) : \exists x \in B_X, \|L(x)\|_Y = \|T\| \}.$$

- $Lip_{SNA}(M, Y) := \{ f \in Lip_0(M, Y) : \exists x \neq y \in M,$
 $f(x) - f(y) = \|f\|_Y d(x, y) \}.$

Theorem (Bishop - Phelps)

$$\overline{\mathcal{NA}(X,\mathbb{R})}^{\|\cdot\|}=\mathcal{L}(X,\mathbb{R})=X^*$$

Questions

Bearing in mind $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$, we wonder if the two previous notions of norm attainment are the same, and if there is an equivalent version of the Bishop-Phelps theorem in spaces of Lipschitz functions.

Scalar-valued case

< □ > < ■ > < E > < E > E のQ () 12/1

Theorem (García-Lirola, Rueda Zoca, P.)

Let *M* be a compact *m*. s. such that $lip_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), \mathbb{R}) = Lip_{SNA}(M, \mathbb{R})$. Thus, according to Bishop-Phelps theorem, we have

$$\overline{Lip_{SNA}(M,\mathbb{R})}^{\|\cdot\|} = Lip_0(M).$$

・ロト ・ 理 ト ・ ヨ ト ・

3) 3

13/1

Scalar-valued case

${\sf Ingredients} \ {\sf of} \ {\sf the} \ {\sf proof}:$

<ロ> < 部> < 書> < 書> < 書> と書 のへの 14/1

Proposition (Weaver)

Let *M* be a metric space and let $\gamma \in \text{ext}(B_{Lip_0(X)^*})$. Then, $\gamma \in \mathcal{F}(M)$ if and only if $\gamma = \frac{\delta_M(x) - \delta_M(y)}{d(x,y)}$ for some $x \neq y$.

Proposition (Weaver)

Let *M* be a metric space and let $\gamma \in \text{ext}(B_{Lip_0(X)^*})$. Then, $\gamma \in \mathcal{F}(M)$ if and only if $\gamma = \frac{\delta_M(x) - \delta_M(y)}{d(x,y)}$ for some $x \neq y$.

Lemma (Godefroy)

Let X be a Banach space which is an M-ideal in its bidual, that is $X^{***} = X^{\perp} \oplus_1 X^*$. If x^{**} attains its norm on B_{X^*} , then x^{**} attains its norm on some $x^* \in B_{X^*} \cap ext(B_{X^{***}})$.

Proposition (Weaver)

Let *M* be a metric space and let $\gamma \in \text{ext}(B_{Lip_0(X)^*})$. Then, $\gamma \in \mathcal{F}(M)$ if and only if $\gamma = \frac{\delta_M(x) - \delta_M(y)}{d(x,y)}$ for some $x \neq y$.

Lemma (Godefroy)

Let X be a Banach space which is an M-ideal in its bidual, that is $X^{***} = X^{\perp} \oplus_1 X^*$. If x^{**} attains its norm on B_{X^*} , then x^{**} attains its norm on some $x^* \in B_{X^*} \cap ext(B_{X^{***}})$.

Lemma (Kalton)

If M is compact, then for every $\varepsilon > 0$, there is $Z \subseteq c_0$ which is $(1 + \varepsilon)$ -isomorphic to $lip_0(M)$.

Proposition (Weaver)

Let *M* be a metric space and let $\gamma \in \text{ext}(B_{Lip_0(X)^*})$. Then, $\gamma \in \mathcal{F}(M)$ if and only if $\gamma = \frac{\delta_M(x) - \delta_M(y)}{d(x,y)}$ for some $x \neq y$.

Lemma (Godefroy)

Let X be a Banach space which is an M-ideal in its bidual, that is $X^{***} = X^{\perp} \oplus_1 X^*$. If x^{**} attains its norm on B_{X^*} , then x^{**} attains its norm on some $x^* \in B_{X^*} \cap ext(B_{X^{***}})$.

Lemma (Kalton)

If M is compact, then for every $\varepsilon > 0$, there is $Z \subseteq c_0$ which is $(1 + \varepsilon)$ -isomorphic to $lip_0(M)$.

<ロ> < 部> < 書> < 書> < 書> と書 のへの 15/1

For
$$x \in X$$
 and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by :
 $\langle x \otimes y, B \rangle = B(x, y).$

<ロ> < 部> < 書> < 書> < 書> と書 ののの 16/1

For
$$x \in X$$
 and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by :
 $\langle x \otimes y, B \rangle = \mathcal{B}(x, y)$.
Now let :
 $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*$.

For
$$x \in X$$
 and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by :
 $\langle x \otimes y, B \rangle = B(x, y).$
Now let :
 $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

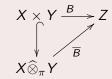
Proposition (Fundamental linearisation property)

Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes

For
$$x \in X$$
 and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by :
 $\langle x \otimes y, B \rangle = B(x, y).$
Now let :
 $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

Proposition (Fundamental linearisation property)

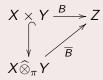
Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes



For
$$x \in X$$
 and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by :
 $\langle x \otimes y, B \rangle = B(x, y).$
Now let :
 $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

Proposition (Fundamental linearisation property)

Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes



Thus $\mathcal{B}(X \times Y, Z) \equiv \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$.

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

<ロト < 部 > < 言 > < 言 > こ き く こ > こ の へ () 17/1

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

<ロト < 部 > < 言 > < 言 > こ き く こ > こ の へ () 17/1

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

17/1

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$.

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

17/1

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$.

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

17/1

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$.

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

17/1

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$. This leads us to the following definition.

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$. This leads us to the following definition.

Definition (Vector-valued Lipschitz-free space)

We may define the X-valued Lipschitz-free space over M to be : $\mathcal{F}(M)\widehat{\otimes}_{\pi}X$.

Vector valued case

< □ > < ■ > < E > < E > E のQ () 18/1

Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), Y) = Lip_{SNA}(M, Y)$.

Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), Y) = Lip_{SNA}(M, Y)$.

Caution ! No Bishop-Phelps theorem in the vector valued case.

Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), Y) = Lip_{SNA}(M, Y)$.

Caution ! No Bishop-Phelps theorem in the vector valued case.

Theorem (García-Lirola, Rueda Zoca, P.)

Let M be a proper m. s. such that $lip_0(M)^* \equiv \mathcal{F}(M)$. Assume that Y^* has (RNP), and $\mathcal{F}(M)$ or Y^* has (AP), then : $\overline{\mathcal{NA}(\mathcal{F}(M), Y^{**})}^{\|\cdot\|} = \mathcal{L}(\mathcal{F}(M), Y^{**})$ and $\overline{Lip_{SNA}(M, Y)}^{\|\cdot\|} = Lip_0(M, Y^{**}).$

Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), Y) = Lip_{SNA}(M, Y)$.

Caution ! No Bishop-Phelps theorem in the vector valued case.

Theorem (García-Lirola, Rueda Zoca, P.)

Let M be a proper m. s. such that $lip_0(M)^* \equiv \mathcal{F}(M)$. Assume that Y^* has (RNP), and $\mathcal{F}(M)$ or Y^* has (AP), then : $\overline{\mathcal{NA}(\mathcal{F}(M), Y^{**})}^{\|\cdot\|} = \mathcal{L}(\mathcal{F}(M), Y^{**})$ and $\overline{Lip_{SNA}(M, Y)}^{\|\cdot\|} = Lip_0(M, Y^{**}).$

Main ideas : $\mathcal{L}(\mathcal{F}(M), Y^{**}) = (\mathcal{F}(M)\widehat{\otimes}_{\pi}Y^{*})^{*}$ and $(RNP) \Longrightarrow$ Krein Milman property \Longrightarrow Lot of extreme points.

Thank you very much!

Thank you very much ! Good luck to the other phd students !

- C. Petitjean, Lipschitz-free spaces and Schur properties, J. of Math. Anal. Appl. Available at : https://arxiv.org/abs/1603.01391
- L. García-Lirola, C. Petitjean and A. Rueda Zoca, *On the structure of spaces of vector-valued Lipschitz functions*, to appear in Studia Math. Available at : https://arxiv.org/pdf/1606.05999.pdf.