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Definition and first properties

(M, d) and (N, d) pointed metric space with origin 0.

X , Y , Z real Banach spaces.
Lip0(M) = {f : M → R Lipschitz : f (0) = 0}

‖f ‖L = sup
x 6=y∈M

|f (x)− f (y)|
d(x , y)

(Best Lipschitz constant of f )

(Lip0(M), ‖ · ‖L) Banach space.

For x ∈ M, define δM(x) ∈ Lip0(M)∗ by 〈δM(x), f 〉 = f (x).

Definition
Lipschitz-free space over M :
F(M) := span {δM(x) ; x ∈ M}‖·‖ ⊂ Lip0(M)∗.

Remark
δM : x ∈ M 7→ δM(x) ∈ F(M) is a non linear isometry.
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Definition and first properties

Proposition (Fundamental factorisation property)

The Lipschitz-free space F(M) has the following property :
∀X Banach, ∀ f : M → X Lipschitz, ∃! f : F(M)→ X with
‖f ‖ = ‖f ‖L and such that the following diagram commutes

M f //� _

δM
��

X

F(M)
f

<<

The map f ∈ Lip0(M,X ) 7→ f ∈ L(F(M),X ) is an onto linear
isometry. We write Lip0(M,X ) ≡ L(F(M),X ).

Remark : For X = R we obtain : Lip0(M) ≡ F(M)∗.
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Definition and first properties

Examples

i) F(N) ≡ `1(N)

ii) F(R) ≡ L1(R)

iii) F(R2) ? F(R3) ?

Godefroy - Kalton program :
Explore the linear structure of F(M) for "simple spaces M".
Simple spaces ? Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm −→ `1, c0...
Motivation :
Nonlinear classification of Banach spaces
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Little Lipschitz spaces and double duality result

Definition
Let (M, d) be a metric space. We define the following closed
subspace of Lip0(M) :

lip0(M) :=

{
f ∈ Lip0(M) : lim

ε→0
sup

0<d(x ,y)<ε

|f (x)− f (y)|
d(x , y)

= 0

}
.

We say that lip0(M) separates points uniformly (SPU) if there is a
constant C ≥ 1 such that ∀x 6= y ∈ M, ∃f ∈ lip0(M) with
‖f ‖L ≤ C and |f (x)− f (y)| = d(x , y).

Examples (Trivial)

i) lip0(R) = {0}, and also lip0(X ) = {0} for any Banach space X .
ii) lip0(N) = Lip0(N), and also lip0(D) = Lip0(D) for any

uniformly discrete metric space D.
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Little Lipschitz spaces and double duality result

Proposition (Weaver)

Let (M, d) be a compact metric space then

lip0(M) S.P.U.⇔ lip0(M)∗ = F(M).

(P. =⇒ In this case, F(M) has the Schur property and sometimes
even better)

Examples (Nontrivial)

For M as follows, lip0(M) SPU :
i) (Weaver) : M the middle-third Cantor set.
ii) (Godefroy) : M "small" Cantor set.
iii) (Dalet) : M countable compact.
iv) “Many other families of examples..."
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Definitions

Definition
- NA(X ,Y ) := {T ∈ L(X ,Y ) : ∃x ∈ BX , ‖L(x)‖Y = ‖T‖}.

- LipSNA(M,Y ) := {f ∈ Lip0(M,Y ) : ∃ x 6= y ∈ M,
f (x)− f (y) = ‖f ‖Y d(x , y)}.

Theorem (Bishop - Phelps)

NA(X ,R)
‖·‖

= L(X ,R) = X ∗

Questions
Bearing in mind Lip0(M,X ) ≡ L(F(M),X ), we wonder if the two
previous notions of norm attainment are the same, and if there is
an equivalent version of the Bishop-Phelps theorem in spaces of
Lipschitz functions.
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Scalar-valued case
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Scalar-valued case

Theorem (García-Lirola, Rueda Zoca, P.)

Let M be a compact m. s. such that lip0(M)∗ ≡ F(M). Then
NA(F(M),R) = LipSNA(M,R). Thus, according to Bishop-Phelps
theorem, we have

LipSNA(M,R)
‖·‖

= Lip0(M).
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Scalar-valued case

Ingredients of the proof :

Proposition (Weaver)

Let M be a metric space and let γ ∈ ext(BLip0(X )∗). Then,
γ ∈ F(M) if and only if γ = δM(x)−δM(y)

d(x ,y) for some x 6= y.

Lemma (Godefroy)

Let X be a Banach space which is an M-ideal in its bidual, that is
X ∗∗∗ = X⊥ ⊕1 X ∗. If x∗∗ attains its norm on BX∗ , then x∗∗ attains
its norm on some x∗ ∈ BX∗ ∩ ext(BX∗∗∗).

Lemma (Kalton)

If M is compact, then for every ε > 0, there is Z ⊆ c0 which is
(1 + ε)-isomorphic to lip0(M).
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Proposition (Weaver)
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Projective tensor product and vector valued Lipschitz-free spaces
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Projective tensor product and vector valued Lipschitz-free spaces

For x ∈ X and y ∈ Y , define x ⊗ y ∈ B(X × Y ,Z )∗ by :
〈x ⊗ y ,B〉 = B(x , y).

Now let :
X ⊗̂πY = span‖·‖{x ⊗ y : x ∈ X , y ∈ Y } ⊆ B(X × Y ,Z )∗.

Proposition (Fundamental linearisation property)

Consider B in B(X × Y ,Z ). Then there exists a unique continuous
linear operator B̄ : X ⊗̂πY → Z such that ‖B̄‖ = ‖B‖ and such
that the following diagram commutes

X × Y B //
� _

��

Z

X ⊗̂πY
B

<<

Thus B(X × Y ,Z ) ≡ L(X ⊗̂πY ,Z ).
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Projective tensor product and vector valued Lipschitz-free spaces

Remarks

i) Z = R : (X ⊗̂πY )∗ ≡ B(X × Y ).

ii) It is easy to see that : B(X × Y ) ≡ L(X ,Y ∗).

Thus we have L(X ,Y ∗) ≡ (X ⊗̂πY )∗.
Recall that Lip0(M,X ∗) ≡ L(F(M),X ∗).
Finally we obtain Lip0(M,X ∗) ≡ (F(M)⊗̂πX )∗.
This leads us to the following definition.

Definition (Vector-valued Lipschitz-free space)

We may define the X -valued Lipschitz-free space over M to be :
F(M)⊗̂πX .
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Vector valued case
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Vector valued case

Proposition

Let M be a proper m. s. such that S0(M)∗ ≡ F(M). Then
NA(F(M),Y ) = LipSNA(M,Y ).

Caution ! No Bishop-Phelps theorem in the vector valued case.

Theorem (García-Lirola, Rueda Zoca, P.)

Let M be a proper m. s. such that lip0(M)∗ ≡ F(M). Assume that
Y ∗ has (RNP), and F(M) or Y ∗ has (AP), then :

NA(F(M),Y ∗∗)
‖·‖

= L(F(M),Y ∗∗) and

LipSNA(M,Y )
‖·‖

= Lip0(M,Y ∗∗).

Main ideas : L(F(M),Y ∗∗) = (F(M)⊗̂πY ∗)∗ and
(RNP) =⇒ Krein Milman property =⇒ Lot of extreme points.
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Vector valued case

Thank you very much !

Good luck to the other phd students !
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Vector valued case

C. Petitjean, Lipschitz-free spaces and Schur properties, J. of
Math. Anal. Appl. Available at :
https://arxiv.org/abs/1603.01391

L. García-Lirola, C. Petitjean and A. Rueda Zoca, On the
structure of spaces of vector-valued Lipschitz functions, to
appear in Studia Math. Available at :
https://arxiv.org/pdf/1606.05999.pdf.
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