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Proposition (Fundamental factorisation property)

The Lipschitz-free space F (M) has the following property :
VX Banach, Vf: M — X Lipschitz, 3 f : F(M) — X with
]| = ||f||L and such that the following diagram commutes

“l

F(M)

The map f € Lipg(M, X) — f € L(F(M), X) is an onto linear
isometry. We write Lipo(M, X) = L(F(M), X).

Remark : For X = R we obtain : Lipg(M) = F(M)*.
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Definition and first properties

) F(N)
i) F(R) = Li(R)
i) F(R2)? F(R3)?

Godefroy - Kalton program :

Explore the linear structure of F(M) for "simple spaces M".
Simple spaces? Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm — /1, ¢...

Motivation :

Nonlinear classification of Banach spaces
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Let (M, d) be a metric space. We define the following closed
subspace of Lipg(M) :

- - - i [FO) =)l _
lipo(M) := {f € Lipo(M) : Elm)kds(gg)q dxy) 0,.

We say that lipg(M) separates points uniformly (SPU) if there is a
constant C > 1 such that Vx # y € M, 3f € lipg(M) with
[flle < Cand |f(x) — f(y)| = d(x, y).

Examples (Trivial)
i) lipo(R) = {0}, and also lipg(X) = {0} for any Banach space X.

ii) lipo(N) = Lipo(N), and also lipg(D) = Lipo(D) for any
uniformly discrete metric space D.
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Little Lipschitz spaces and double duality result

Proposition (Weaver)

Let (M, d) be a compact metric space then
lipo(M) S.P.U. < lipo(M)* = F(M).

(P. = In this case, F (M) has the Schur property and sometimes
even better)

| A

Examples (Nontrivial)
For M as follows, lipo(M) SPU :
i) (Weaver) : M the middle-third Cantor set.
(Godefroy) : M "small" Cantor set.

i)
iii) (Dalet) : M countable compact.
)

iv) “Many other families of examples..."
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- NAX,Y) :={T € L(X,Y) : Ix € Bx, [L(x)ly = T}
- Lipsya(M, Y) :={f € Lipp(M,Y) : Ix#y e M,
F(x) = f(y) = lIfllyd(x,y)}.

Theorem (Bishop - Phelps)

NAX R = £(x,R) = x*

| A

Questions

Bearing in mind Lipo(M, X) = L(F(M), X), we wonder if the two
previous notions of norm attainment are the same, and if there is
an equivalent version of the Bishop-Phelps theorem in spaces of
Lipschitz functions.

\
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Scalar-valued case

Theorem (Garcia-Lirola, Rueda Zoca, P.)

Let M be a compact m. s. such that lipo(M)* = F(M). Then

NA(F(M),R) = Lipsya(M,R). Thus, according to Bishop-Phelps
theorem, we have

Lipswa(M,B)' = Lipo(M).
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X®,Y =spanl'l{x®y : xe X,y € Y} CB(X x Y, 2Z)".

Proposition (Fundamental linearisation property)

Consider B in B(X x Y, Z). Then there exists a unique continuous

linear operator B : X®,Y — Z such that ||B|| = ||B|| and such
that the following diagram commutes

XxYL2 .z

e

X®rY

Thus BIX x Y,2) = L(X®,Y, Z).
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Projective tensor product and vector valued Lipschitz-free spaces

) Z=R: (X&:Y)*=B(X x Y).
ii) Itis easy to see that : B(X x Y) = L(X, Y*).

Thus we have £(X, Y*) = (X®,Y)*.

Recall that Lipo(M, X*) = L(F(M), X*).
Finally we obtain Lipg(M, X*) = (F(M)®.X)*.
This leads us to the following definition.

Definition (Vector-valued Lipschitz-free space)

We may define the X-valued Lipschitz-free space over M to be :
F(M)@-X.
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Vector valued case

Proposition

Let M be a proper m. s. such that So(M)* = F(M). Then
N.A(.F(M), Y) = Lips/VA(M, Y)

Caution ! No Bishop-Phelps theorem in the vector valued case.

Theorem (Garcia-Lirola, Rueda Zoca, P.)

Let M be a proper m. s. such that lipo(M)* = F(M). Assume that
Y* has (RNP), and F(M) or Y* has (AP), then :

NAFEMY, v = o(Fm), y**) and
Lipsna(M, )" = Lipo(M, Y**).

Main ideas : L(F(M), Y**) = (F(M)®,Y*)* and
(RNP) = Krein Milman property = Lot of extreme points.
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Vector valued case

Thank you very much!
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Thank you very much!
Good luck to the other phd students!
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Vector valued case

@ C. Petitjean, Lipschitz-free spaces and Schur properties, J. of
Math. Anal. Appl. Available at :
https://arxiv.org/abs/1603.01391

[ L. Garcia-Lirola, C. Petitjean and A. Rueda Zoca, On the
structure of spaces of vector-valued Lipschitz functions, to
appear in Studia Math. Available at :
https://arxiv.org/pdf/1606.05999.pdf.

21/1


https://arxiv.org/abs/1603.01391
https://arxiv.org/pdf/1606.05999.pdf.

	Lipschitz-free spaces
	Definition and first properties
	Little Lipschitz spaces and double duality result

	Norm attainment (scalar valued case)
	Definitions
	Scalar-valued case

	Norm attainment (vector valued case)
	Projective tensor product and vector valued Lipschitz-free spaces
	Vector valued case


