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X>~Y :3T:X— Y bijective linear isomorphism.
X Y Y : 3 T : X — Y bijective and bi-Lipschitz.

X <Y :3ZCY such that X ~ Z.
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- Lipo(M) = {f : M — R Lipschitz : f(0) = 0}
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x#yeM C/(X,y)
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|fllL = sup [0 = Fly)] (Best Lipschitz constant of f)

x#yeM C/(X,y)
(Lipo(M), || - ||) Banach space.

- For x € M, define dpm(x) € Lipo(M)* by (dm(x), f) = f(x).

Definition

Lipschitz-free space over M :
F(M) :=span{dm(x); x € M}

W Lipo(M)*.

Im : x € M= dp(x) € F(M) is a non linear isometry.
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Proposition (Fundamental factorisation property)

The Lipschitz-free space F(M) has the following property :
VX Banach, Vf: M — X Lipschitz, 3" f : F(M) — X with
lf]| = ||f||L and such that the following diagram commutes

“l

F(M)

The map f € Lipg(M, X) — f € L(F(M), X) is an onto linear
isometry.
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Definition and first properties

i) By the previous proposition Lipg(M, X) = L(F(M), X).
i) X =R : Lipo(M) = F(M)*.
i) w* topo on bounded sets of Lipg(M) = topo of pointwise
convergence.

iv) Ifp= 27:1 aiom(x;), ai > 0 with Zi aj=1 and
v = ijzl bjé/\//(yj), b_,' > 0 with Zj bj =1, then

lw—v|| = dor(u,v)

= inf{z aj;d(xi,y;) Za,-j = & Za,-j = p);
i j i

(— Wasserstein distance, Kantorovich-Rubinstein theorem.)

<
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i) F(N) = £1(N)
i) F(R) = Ly(R)

Godefroy - Kalton program :
Study the behavior of F(M) for "simple spaces M", and look for
properties such as

e Approximation properties : (AP), (BAP), (MAP).
e Existence of Basis or FDD.
@ (RNP) / containment of L;.

o weakly sequential completeness / containment of ¢.

@ (1 properties : (Schur), (Strong Schur), containment of /1,
embeddings into #; sums.

Simple spaces? Compact m. s., Proper m. s., Finite dimensional
Banach spaces with any norm — 41, ¢...
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0( ) { 0( ) =0 0<d(x,y)<e d(X,y)
: : [£(x) — f(y)|
So(M) := < f € lipg(M) : lim su —— = —0
0( ) pO( ) r_>ooxor yég(o,r) d(X,y)

XF£y

”
SEES

i) lipo(R) = {0}, and also /lipo(X) = {0} for any Banach space X.

ii) lipo(N) = Lipo(N), and also lipg(D) = Lipo(D) for any
uniformly discrete metric space D.
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Little Lipschitz spaces and double duality results

Definition

We say that a subspace S C Lipg(M) separates points uniformly
(S.P.U.) if there is a constant C > 1 such that Vx #y € M,
Ve >0, 3f € S with ||f||. < C+e and |f(x) — f(y)| = d(x,y).

(Kalton) : S C Lipg(M) S.P.U. with constant C if and only if S is a
C norming subspace of Lip(M) = F(M)*, that is :

Vy € F(M), [lv]l < C sup [{f,7)].
fEBs

Proposition (Weaver/Dalet)

i) Let (K,d) be a compact metric space then
lipo(K) S.P.U. < lipo(K)* = F(K).
i) Let (M,d) be a proper metric space then

So(M) S.P.U. & So(M)* = F(M).

11/29



Notation Lipschitz-free spaces Vector valued case
o ) O0O®O000 - 3

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :

12/29



Notation

itz-free spaces
OOOO®0000

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :
i) (Weaver) : M the middle-third Cantor set.

12/29



Notation Lipschitz-free spaces Vector valued case
0000000080000 00¢ 00

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :
i) (Weaver) : M the middle-third Cantor set.
i) (Godefroy) : M "small" Cantor set.

12/29



Lipschitz-free spaces
ocooe

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :
i) (Weaver) : M the middle-third Cantor set.
i) (Godefroy) : M "small" Cantor set.

iii) (Dalet) : M countable compact (resp. countable proper) m. s.

12/29



Lipschitz-free spaces
ocooe

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :
i) (Weaver) : M the middle-third Cantor set.
i) (Godefroy) : M "small" Cantor set.

)
i) (Dalet) : M countable compact (resp. countable proper) m. s.
)

iv) (Kalton) : (M,w o d) where w is a nontrivial gauge (typically
w(t) = tP with 0 < p < 1).

12/29



Lipschitz-free spaces
ocooe

Little Lipschitz spaces and double duality results

For M as follows, lipg(M) (resp. So(M)) is 1-norming :
i) (Weaver) : M the middle-third Cantor set.

i) (Godefroy) : M "small" Cantor set.

)

i) (Dalet) : M countable compact (resp. countable proper) m. s.

iv) (Kalton) : (M,w o d) where w is a nontrivial gauge (typically
w(t) = tP with 0 < p < 1).

v) (P.): M =(X,]|l-]||5) metric space originating from a
p-Banach spaces which admits a monotone FDD. (0 < p < 1,
for instance X = /).
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Definition

Let X be a Banach space. We say that X has the Schur property
if : V(xn)n C X, xn _% 0 = ||xnl| — 0. (w=0a(X,X*))

Proposition (P.)

i) lipo(M) is 1-norming = F(M) has the Schur property.
i) So(M) is 1-norming + M proper = F(M) has the 1-strong
Schur property.
iit) So(M) is 1-norming + M proper + F(M) has (AP) =
F(M) 2 (> ®nEn)e, where E, C F(M), dim(E,) < oo.

Remark : There exist a compact countable metric space K such
that F(K) does not embed into /3.
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Lemma (Godefroy-Kalton-Li)

Let V' be a subspace of ¢y with (MAP). Then for every ¢ > 0,
there exist (E,)n a sequence of finite dimensional subspaces of V*
and a w* to w* continuous linear map T : V* — (> @&nEn)e, such
that : Vx* € V*: (1 —e)||x*|| < | Tx*|| < (1 +&)||x*|.
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Around some {1 properties

Lemma (Godefroy-Kalton-Li)

Let V' be a subspace of ¢y with (MAP). Then for every ¢ > 0,
there exist (E,)n a sequence of finite dimensional subspaces of V*
and a w* to w* continuous linear map T : V* — (> @&nEn)e, such
that : Vx* € V*: (1 —e)||x*|| < | Tx*|| < (1 +&)||x*|.

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every € > 0, So(M) is
(1 4 ¢)-isomorphic to a subsapce of ¢.

Theorem (Grothendieck)
Let X be a Banach space. Then :
i) If X* has (MAP) then X has (MAP).
ii) If X* is separable and has (AP) then X* has (MAP).

A
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Now let :

X®,Y =spanl'l{x®y : xe X,y € Y} CTB(X x Y, 2Z)".

Proposition (Fundamental linearisation property)

Consider B in B(X x Y, Z). Then there exists a unique continuous

linear operator B : X®,Y — Z such that ||B|| = ||B|| and such
that the following diagram commutes

XxyYLB .z

| A&

X®,Y

Thus BIX x Y,2) = L(X®,Y, Z).
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Projective tensor product

) Z=R: (X&:Y)*=B(X x Y).
ii) Itis easy to see that : B(X x Y) = L(X, Y*).

Thus we have £(X, Y*) = (X®,Y)*.

Recall that Lipo(M, X*) = L(F(M), X*).
Finally we obtain Lipg(M, X*) = (F(M)®.X)*.
This leads us to the following definition.

Definition (Vector-valued Lipschitz-free space)

We may define the X-valued Lipschitz-free space over M to be :
F(M)@-X.
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Injective tensor product : We have chosen to define x ® y as an
element of B(X x Y)*. But we can use another point of view.
Indeed, we can see x ® y as an element of B(X* x Y*).

For (x*,y*) € X* x Y* define x® y by :

(x@y,(x*,y")) =x*(x)y*(y).

Now let :

X&.Y =spanll{x @y : xe X, y € Y} C B(X* x Y*).
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Injective tensor product and bi-duality results

Theorem (Garcia-Lirola, Rueda Zoca, P.)

If M is a proper metric space, then So(M, X) = Ky (X, So(M)).
Thus if So(M)* = F(M)*, and if F(M) or X* has (AP) then
So(M, X)* = F(M)&,X* and So(M, X)** = Lipo(M, X).
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Injective tensor product and bi-duality results

Theorem (Garcia-Lirola, Rueda Zoca, P.)

If M is a proper metric space, then So(M, X) = Ky (X, So(M)).
Thus if So(M)* = F(M)*, and if F(M) or X* has (AP) then
So(M, X)* = F(M)&,X* and So(M, X)** = Lipo(M, X).

Study of F(M)®,X ? Two points of view : Tensor product theory
and Lip functions theory (depending on the property studied).
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Vector valued case
oce

Natural questions

The identification f € Lipg(M, X) — f € L(F(M), X) raise many
natural questions. For instance :

— Compact operators ? (Jiménez-Varguas work)

— Norm attainment 7

In L(F(M), X) we have a clear notion of norm attainment for f:
Sy € F(M) such that [[F(7)]x = IFI] (— NAF(M), X)).

In Lipg(M, X) there are different notions of norm attainment. The
following one is maybe the most natural :

Definition (Strong norm attainment)

We say that f € Lipg(M, X) strongly attains its norm if there exists
x # y such that ||f(x) — f(y)|lx = [|f]|Lird(x,y). We denote
Lipsna(M, X) the set of all Lipschitz functions which strongly
attain their norm.
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Norm attainment

Theorem (Garcia-Lirola, Rueda Zoca, P.)

i) Let M be a proper m. s. such that So(M)* = F(M). Then
NA(F(M), X) = Lipsa(M, X)

i) Let M be a proper m. s. such that So(M)* = F(M). Assume
that F(M), X* have (RNP), and F(M) or X* has (AP),

then : NAFM), X)) | = £(F(M), X**) and
Lipsna(M, X)" = Lipo(M, X**).
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Norm attainment

Thank you very much|
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Norm attainment

C. Petitjean, Lipschitz-free spaces and Schur properties, J. of

Math. Anal. Appl. Available at :
https://arxiv.org/abs/1603.01391

L. Garcia-Lirola, C. Petitjean and A. Rueda Zoca, On the
structure of spaces of vector-valued Lipschitz functions, to
appear in Studia Math. Available at :
https://arxiv.org/pdf/1606.05999.pdf.
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