Vector valued case

Some aspects of the structure of Lipschitz-free spaces and vector-valued Lipschitz functions

Colin PETITJEAN Laboratoire de Mathématiques de Besançon (Joint work with Luis García-Lirola and Abraham Rueda-Zoca)

Seminario Optimization y Equilibrio, CMM Santiago de Chile, May 3, 2017

- 2 Lipschitz-free spaces
 - Definition and first properties
 - Little Lipschitz spaces and double duality results
 - Around some ℓ_1 properties

Output State St

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

(M, d) and (N, d) pointed metric space with origin 0.

(M, d) and (N, d) pointed metric space with origin 0. X, Y Banach spaces over \mathbb{R} .

(M, d) and (N, d) pointed metric space with origin 0.

X, *Y* Banach spaces over \mathbb{R} .

 $X \equiv Y : \exists T : X \rightarrow Y$ bijective linear isometry.

3/29

Notation.

(M, d) and (N, d) pointed metric space with origin 0. X, Y Banach spaces over \mathbb{R} .

 $X \equiv Y : \exists T : X \rightarrow Y$ bijective linear isometry.

 $X \simeq Y : \exists T : X \rightarrow Y$ bijective linear isomorphism.

(M, d) and (N, d) pointed metric space with origin 0. X, Y Banach spaces over \mathbb{R} .

 $X \equiv Y : \exists T : X \rightarrow Y$ bijective linear isometry.

 $X \simeq Y : \exists T : X \rightarrow Y$ bijective linear isomorphism.

 $X \sim Y : \exists T : X \rightarrow Y$ bijective and bi-Lipschitz.

(M, d) and (N, d) pointed metric space with origin 0. X, Y Banach spaces over \mathbb{R} .

 $X \equiv Y : \exists T : X \rightarrow Y$ bijective linear isometry.

 $X \simeq Y : \exists T : X \rightarrow Y$ bijective linear isomorphism.

 $X \sim Y : \exists T : X \rightarrow Y$ bijective and bi-Lipschitz.

 $X \xrightarrow{L} Y : \exists Z \subseteq Y$ such that $X \simeq Z$.

- Definition and first properties
- Little Lipschitz spaces and double duality results
- Around some ℓ_1 properties

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Lipschitz-free spaces

Vector valued case

Definition and first properties

-
$$Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$

Lipschitz-free spaces

Vector valued case

★ロト ★課 ト ★注 ト ★注 ト → 注

5/29

Definition and first properties

$$-Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$
$$\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)} \text{ (Best Lipschitz constant of f)}$$

Lipschitz-free spaces

Vector valued case

★ロト ★課 ト ★注 ト ★注 ト → 注

5/29

Definition and first properties

-
$$Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$

 $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)
 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

Lipschitz-free spaces

Vector valued case

Definition and first properties

Lipschitz-free spaces

-
$$Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$

 $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)
 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

- For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

イロト イポト イヨト イヨト 三日

5/29

Definition and first properties

Lipschitz-free spaces

-
$$Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$

 $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)
 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

- For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

Definition

$$\begin{array}{l} \mathsf{Lipschitz-free space over } M:\\ \mathcal{F}(M):=\overline{\mathsf{span}\left\{\delta_M(x)\,;\,x\in M\right\}}^{\|\cdot\|}\subset \mathit{Lip}_0(M)^*. \end{array}$$

Definition and first properties

Lipschitz-free spaces

-
$$Lip_0(M) = \{f : M \to \mathbb{R} \text{ Lipschitz } : f(0) = 0\}$$

 $\|f\|_L = \sup_{x \neq y \in M} \frac{|f(x) - f(y)|}{d(x, y)}$ (Best Lipschitz constant of f)
 $(Lip_0(M), \|\cdot\|_L)$ Banach space.

- For $x \in M$, define $\delta_M(x) \in Lip_0(M)^*$ by $\langle \delta_M(x), f \rangle = f(x)$.

Definition

$$\begin{array}{l} \text{Lipschitz-free space over } M:\\ \mathcal{F}(M):=\overline{\text{span}\left\{\delta_M(x)\,;\,x\in M\right\}}^{\|\cdot\|}\subset Lip_0(M)^*. \end{array}$$

Remark

 $\delta_M : x \in M \mapsto \delta_M(x) \in \mathcal{F}(M)$ is a non linear isometry.

Vector valued case

Definition and first properties

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

Proposition (Fundamental factorisation property)

The Lipschitz-free space $\mathcal{F}(M)$ has the following property : $\forall X \text{ Banach}, \forall f : M \to X \text{ Lipschitz}, \exists ! \overline{f} : \mathcal{F}(M) \to X \text{ with}$ $\|\overline{f}\| = \|f\|_L$ and such that the following diagram commutes

The map $f \in Lip_0(M, X) \mapsto \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ is an onto linear isometry.

Vector valued case

Definition and first properties

Facts

i) By the previous proposition $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

Definition and first properties

Facts

i) By the previous proposition $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

ii)
$$X = \mathbb{R} : Lip_0(M) \equiv \mathcal{F}(M)^*$$
.

Definition and first properties

Facts

i) By the previous proposition $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

ii)
$$X = \mathbb{R}$$
 : $Lip_0(M) \equiv \mathcal{F}(M)^*$.

iii) ω^* topo on bounded sets of $Lip_0(M) = topo$ of pointwise convergence.

Definition and first properties

Facts

i) By the previous proposition $Lip_0(M, X) \equiv \mathcal{L}(\mathcal{F}(M), X)$.

ii)
$$X = \mathbb{R}$$
 : $Lip_0(M) \equiv \mathcal{F}(M)^*$.

iii) ω^* topo on bounded sets of $Lip_0(M) = topo$ of pointwise convergence.

$$\begin{array}{ll} \text{iv)} & \text{If } \mu = \sum_{i=1}^{n} a_i \delta_M(x_i), \ a_i \ge 0 \ \text{with } \sum_i a_i = 1 \ \text{and} \\ \nu = \sum_{j=1}^{m} b_j \delta_M(y_j), \ b_j \ge 0 \ \text{with } \sum_j b_j = 1, \ \text{then} \\ \\ \|\mu - \nu\| &= d_{OT}(\mu, \nu) \\ &= \inf\{\sum_{i,j} a_{ij}d(x_i, y_j) : \sum_j a_{ij} = a_i \sum_i a_{ij} = b_j\} \end{array}$$

 $(\rightarrow Wasserstein \ distance, \ Kantorovich-Rubinstein \ theorem.)$

Vector valued case

Definition and first properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

Definition and first properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

8/29

Definition and first properties

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

• Approximation properties : (AP), (BAP), (MAP).

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c_0 .
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Simple spaces?

Examples

i)
$$\mathcal{F}(\mathbb{N}) = \ell_1(\mathbb{N})$$

ii) $\mathcal{F}(\mathbb{R}) = L_1(\mathbb{R})$

Godefroy - Kalton program :

Study the behavior of $\mathcal{F}(M)$ for "simple spaces M", and look for properties such as

- Approximation properties : (AP), (BAP), (MAP).
- Existence of Basis or FDD.
- (RNP) / containment of L_1 .
- weakly sequential completeness / containment of c₀.
- ℓ_1 properties : (Schur), (Strong Schur), containment of ℓ_1 , embeddings into ℓ_1 sums.

Simple spaces ? Compact m. s., Proper m. s., Finite dimensional Banach spaces with any norm $\longrightarrow \ell_1, c_0...$

Little Lipschitz spaces and double duality results

2 Lipschitz-free spaces

Definition and first properties

• Little Lipschitz spaces and double duality results

• Around some ℓ_1 properties

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

<ロト < 部ト < 目ト < 目ト 目 のへの 10/29 Little Lipschitz spaces and double duality results

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{0 < d(x,y) < \varepsilon} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_0(M) := \left\{ f \in lip_0(M) : \lim_{\substack{r \to \infty \\ x \text{ or } y \notin B(0,r) \\ x \neq y}} \sup_{\substack{|f(x) - f(y)| \\ d(x,y)}} = 0 \right\}.$$

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_{0}(M) := \left\{ f \in Lip_{0}(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_{0}(M) := \left\{ f \in lip_{0}(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Examples

i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.

Definition

Let (M, d) be a metric space. We define the two following closed subspaces of $Lip_0(M)$:

$$lip_0(M) := \left\{ f \in Lip_0(M) : \lim_{\varepsilon \to 0} \sup_{\substack{0 < d(x,y) < \varepsilon}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\},$$
$$S_0(M) := \left\{ f \in lip_0(M) : \lim_{\substack{r \to \infty \\ x \neq y}} \sup_{\substack{x \text{ or } y \notin B(0,r) \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} = 0 \right\}.$$

Examples

- i) $lip_0(\mathbb{R}) = \{0\}$, and also $lip_0(X) = \{0\}$ for any Banach space X.
- ii) $lip_0(\mathbb{N}) = Lip_0(\mathbb{N})$, and also $lip_0(D) = Lip_0(D)$ for any uniformly discrete metric space D.

11/29

Little Lipschitz spaces and double duality results

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0$, $\exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

11/29

Little Lipschitz spaces and double duality results

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0, \exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

(Kalton) : $S \subseteq Lip_0(M)$ S.P.U. with constant C if and only if S is a C norming subspace of $Lip(M) = \mathcal{F}(M)^*$, that is :

$$\forall \gamma \in \mathcal{F}(M), \ \|\gamma\| \leq C \sup_{f \in B_{\mathcal{S}}} |\langle f, \gamma \rangle|.$$

Definition

We say that a subspace $S \subseteq Lip_0(M)$ separates points uniformly (S.P.U.) if there is a constant $C \ge 1$ such that $\forall x \neq y \in M$, $\forall \varepsilon > 0$, $\exists f \in S$ with $\|f\|_L \le C + \varepsilon$ and |f(x) - f(y)| = d(x, y).

(Kalton) : $S \subseteq Lip_0(M)$ S.P.U. with constant C if and only if S is a C norming subspace of $Lip(M) = \mathcal{F}(M)^*$, that is :

$$\forall \gamma \in \mathcal{F}(M), \ \|\gamma\| \leq C \sup_{f \in B_{\mathcal{S}}} |\langle f, \gamma \rangle|.$$

Proposition (Weaver/Dalet)

i) Let (K, d) be a compact metric space then

 $lip_0(K)$ S.P.U. $\Leftrightarrow lip_0(K)^* = \mathcal{F}(K)$.

ii) Let (M, d) be a proper metric space then

 $S_0(M)$ S.P.U. $\Leftrightarrow S_0(M)^* = \mathcal{F}(M)$.

Notation

Lipschitz-free spaces

Vector valued case

Little Lipschitz spaces and double duality results

Examples

For *M* as follows, $lip_0(M)$ (resp. $S_0(M)$) is 1-norming :

<ロト < 部ト < 目ト < 目ト 目 のへの 12/29 Notation

Little Lipschitz spaces and double duality results

Examples

For *M* as follows, $lip_0(M)$ (resp. $S_0(M)$) is 1-norming :

i) (Weaver) : *M* the middle-third Cantor set.

Examples

- i) (Weaver) : *M* the middle-third Cantor set.
- ii) (Godefroy) : *M* "small" Cantor set.

Examples

- i) (Weaver) : *M* the middle-third Cantor set.
- ii) (Godefroy) : *M* "small" Cantor set.
- iii) (Dalet) : *M* countable compact (resp. countable proper) m. s.

Examples

- i) (Weaver) : *M* the middle-third Cantor set.
- ii) (Godefroy) : *M* "small" Cantor set.
- iii) (Dalet) : *M* countable compact (resp. countable proper) m. s.
- iv) (Kalton) : $(M, \omega \circ d)$ where ω is a nontrivial gauge (typically $\omega(t) = t^p$ with 0).

Examples

- i) (Weaver) : *M* the middle-third Cantor set.
- ii) (Godefroy) : *M* "small" Cantor set.
- iii) (Dalet) : M countable compact (resp. countable proper) m. s.
- iv) (Kalton) : $(M, \omega \circ d)$ where ω is a nontrivial gauge (typically $\omega(t) = t^p$ with 0).
- v) (P.) : M = (X, || ⋅ ||^p_p) metric space originating from a p-Banach spaces which admits a monotone FDD. (0 p</sub>).

2 Lipschitz-free spaces

- Definition and first properties
- Little Lipschitz spaces and double duality results
- Around some ℓ_1 properties

3 Vector valued case

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Notation

Lipschitz-free spaces

Vector valued case

Around some ℓ_1 properties

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Vector valued case

Around some ℓ_1 properties

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Proposition (P.)

i) $lip_0(M)$ is 1-norming $\implies \mathcal{F}(M)$ has the Schur property.

・ロト (部) (音) (音) (音) (音) (14/29)

Around some ℓ_1 properties

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Proposition (P.)

- i) $lip_0(M)$ is 1-norming $\implies \mathcal{F}(M)$ has the Schur property.
- ii) $S_0(M)$ is 1-norming + M proper $\implies \mathcal{F}(M)$ has the 1-strong Schur property.

Around some ℓ_1 properties

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Proposition (P.)

- i) $lip_0(M)$ is 1-norming $\implies \mathcal{F}(M)$ has the Schur property.
- ii) $S_0(M)$ is 1-norming + M proper $\implies \mathcal{F}(M)$ has the 1-strong Schur property.
- iii) $S_0(M)$ is 1-norming + M proper + $\mathcal{F}(M)$ has $(AP) \Longrightarrow$ $\mathcal{F}(M) \underset{1+\varepsilon}{\hookrightarrow} (\sum \bigoplus_n E_n)_{\ell_1}$ where $E_n \subset \mathcal{F}(M)$, $\dim(E_n) < \infty$.

Around some ℓ_1 properties

Definition

Let X be a Banach space. We say that X has the Schur property if : $\forall (x_n)_n \subset X, x_n \xrightarrow[n \to \infty]{\omega} 0 \Longrightarrow ||x_n|| \xrightarrow[n \to \infty]{\omega} 0. (\omega = \sigma(X, X^*))$

Proposition (P.)

- i) $lip_0(M)$ is 1-norming $\implies \mathcal{F}(M)$ has the Schur property.
- ii) $S_0(M)$ is 1-norming + M proper $\implies \mathcal{F}(M)$ has the 1-strong Schur property.
- iii) $S_0(M)$ is 1-norming + M proper + $\mathcal{F}(M)$ has $(AP) \Longrightarrow$ $\mathcal{F}(M) \underset{1+\varepsilon}{\hookrightarrow} (\sum \bigoplus_n E_n)_{\ell_1}$ where $E_n \subset \mathcal{F}(M)$, $\dim(E_n) < \infty$.

Remark : There exist a compact countable metric space K such that F(K) does not embed into ℓ_1 .

イロト 不得下 イヨト イヨト 二日

15/29

Around some ℓ_1 properties

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that $: \forall x^* \in V^* : (1 - \varepsilon) \|x^*\| \le \|Tx^*\| \le (1 + \varepsilon) \|x^*\|$.

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that $: \forall x^* \in V^* : (1 - \varepsilon) \|x^*\| \le \|Tx^*\| \le (1 + \varepsilon) \|x^*\|$.

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every $\varepsilon > 0$, $S_0(M)$ is $(1 + \varepsilon)$ -isomorphic to a subsapce of c_0 .

Lemma (Godefroy-Kalton-Li)

Let V be a subspace of c_0 with (MAP). Then for every $\varepsilon > 0$, there exist $(E_n)_n$ a sequence of finite dimensional subspaces of V^{*} and a ω^* to ω^* continuous linear map $T : V^* \to (\sum \bigoplus_n E_n)_{\ell_1}$ such that $: \forall x^* \in V^* : (1 - \varepsilon) ||x^*|| \le ||Tx^*|| \le (1 + \varepsilon) ||x^*||.$

Lemma (Kalton/Dalet)

If M is a proper metric space. Then for every $\varepsilon > 0$, $S_0(M)$ is $(1 + \varepsilon)$ -isomorphic to a subsapce of c_0 .

Theorem (Grothendieck)

Let X be a Banach space. Then :

- i) If X^* has (MAP) then X has (MAP).
- ii) If X^* is separable and has (AP) then X^* has (MAP).

э

(日) (圖) (臣) (臣)

Questions i) Get a characterisation of free-spaces having the Schur property (" ").

<ロト < 部ト < 目ト < 目ト 目 のへの 16/29

Questions

- i) Get a characterisation of free-spaces having the Schur property ("⇐=").
- ii) $S_0(M)$ is 1-norming + M proper $\implies \mathcal{F}(M)$ has (AP)?

Lipschitz-free spaces

- Definition and first properties
- Little Lipschitz spaces and double duality results
- Around some ℓ_1 properties

Vector valued case

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Notation

Lipschitz-free spaces

Vector valued case

Projective tensor product

Let X, Y, Z be Banach spaces.

Let X, Y, Z be Banach spaces. For $x \in X$ and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by : $\langle x \otimes y, B \rangle = B(x, y).$

18/29

Projective tensor product

Let X, Y, Z be Banach spaces. For $x \in X$ and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by : $\langle x \otimes y, B \rangle = B(x, y)$. Now let : $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*$.

Let X, Y, Z be Banach spaces. For $x \in X$ and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by : $\langle x \otimes y, B \rangle = B(x, y).$ Now let : $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

Proposition (Fundamental linearisation property)

Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes

Let X, Y, Z be Banach spaces. For $x \in X$ and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by : $\langle x \otimes y, B \rangle = B(x, y).$ Now let : $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

Proposition (Fundamental linearisation property)

Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes

Let X, Y, Z be Banach spaces. For $x \in X$ and $y \in Y$, define $x \otimes y \in \mathcal{B}(X \times Y, Z)^*$ by : $\langle x \otimes y, B \rangle = B(x, y).$ Now let : $X \widehat{\otimes}_{\pi} Y = \overline{\operatorname{span}}^{\|\cdot\|} \{ x \otimes y : x \in X, y \in Y \} \subseteq \mathcal{B}(X \times Y, Z)^*.$

Proposition (Fundamental linearisation property)

Consider B in $\mathcal{B}(X \times Y, Z)$. Then there exists a unique continuous linear operator $\overline{B} : X \widehat{\otimes}_{\pi} Y \to Z$ such that $\|\overline{B}\| = \|B\|$ and such that the following diagram commutes

Thus $\mathcal{B}(X \times Y, Z) \equiv \mathcal{L}(X \widehat{\otimes}_{\pi} Y, Z)$.

Notation

Lipschitz-free spaces

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

<ロト < 部 ト < 言 ト < 言 ト 三 の < @ 19/29

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

<ロト <置ト < 差ト < 差ト = 差

19/29

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$.

19/29

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that :
$$\mathcal{B}(X imes Y) \equiv \mathcal{L}(X, Y^*).$$

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$.

19/29

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$.

19/29

Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$. This leads us to the following definition.
Projective tensor product

Remarks

i)
$$Z = \mathbb{R} : (X \widehat{\otimes}_{\pi} Y)^* \equiv \mathcal{B}(X \times Y).$$

ii) It is easy to see that : $\mathcal{B}(X \times Y) \equiv \mathcal{L}(X, Y^*)$.

Thus we have $\mathcal{L}(X, Y^*) \equiv (X \widehat{\otimes}_{\pi} Y)^*$. Recall that $Lip_0(M, X^*) \equiv \mathcal{L}(\mathcal{F}(M), X^*)$. Finally we obtain $Lip_0(M, X^*) \equiv (\mathcal{F}(M) \widehat{\otimes}_{\pi} X)^*$. This leads us to the following definition.

Definition (Vector-valued Lipschitz-free space)

We may define the X-valued Lipschitz-free space over M to be : $\mathcal{F}(M)\widehat{\otimes}_{\pi}X$.

- Lipschitz-free spaces
 - Definition and first properties
 - Little Lipschitz spaces and double duality results
 - Around some ℓ_1 properties

Output State St

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Injective tensor product : We have chosen to define $x \otimes y$ as an element of $\mathcal{B}(X \times Y)^*$. But we can use another point of view.

21/29

Injective tensor product and bi-duality results

Injective tensor product : We have chosen to define $x \otimes y$ as an element of $\mathcal{B}(X \times Y)^*$. But we can use another point of view. Indeed, we can see $x \otimes y$ as an element of $\mathcal{B}(X^* \times Y^*)$.

21/29

Injective tensor product and bi-duality results

Injective tensor product : We have chosen to define $x \otimes y$ as an element of $\mathcal{B}(X \times Y)^*$. But we can use another point of view. Indeed, we can see $x \otimes y$ as an element of $\mathcal{B}(X^* \times Y^*)$. For $(x^*, y^*) \in X^* \times Y^*$ define $x \otimes y$ by : $\langle x \otimes y, (x^*, y^*) \rangle = x^*(x)y^*(y)$.

Injective tensor product : We have chosen to define $x \otimes y$ as an element of $\mathcal{B}(X \times Y)^*$. But we can use another point of view. Indeed, we can see $x \otimes y$ as an element of $\mathcal{B}(X^* \times Y^*)$. For $(x^*, y^*) \in X^* \times Y^*$ define $x \otimes y$ by : $\langle x \otimes y, (x^*, y^*) \rangle = x^*(x)y^*(y)$. Now let :

$$X\widehat{\otimes}_arepsilon Y = \overline{\operatorname{span}}^{\|\cdot\|}\{x\otimes y\,:\, x\in X,\, y\in Y\}\subseteq \mathcal{B}(X^* imes Y^*).$$

In some cases, we have the relation $S_0(M)^* \equiv \mathcal{F}(M)$ and thus $Lip_0(M) \equiv S_0(M)^{**}$. What about the vector-valued case?

22/29

Injective tensor product and bi-duality results

In some cases, we have the relation $S_0(M)^* \equiv \mathcal{F}(M)$ and thus $Lip_0(M) \equiv S_0(M)^{**}$. What about the vector-valued case?

Proposition (Tensor product theory)

i)
$$X^*$$
 or Y^* has (RNP) and X^* or Y^* has (AP) \Longrightarrow
 $(X \widehat{\otimes}_{\varepsilon} Y)^* \equiv X^* \widehat{\otimes}_{\pi} Y^*.$

Injective tensor product and bi-duality results

In some cases, we have the relation $S_0(M)^* \equiv \mathcal{F}(M)$ and thus $Lip_0(M) \equiv S_0(M)^{**}$. What about the vector-valued case?

Proposition (Tensor product theory)

 \rightarrow Natural candidate from tensor product theory : $S_0(M) \widehat{\otimes}_{\varepsilon} X$.

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (

22/29

Injective tensor product and bi-duality results

In some cases, we have the relation $S_0(M)^* \equiv \mathcal{F}(M)$ and thus $Lip_0(M) \equiv S_0(M)^{**}$. What about the vector-valued case?

Proposition (Tensor product theory)

i)
$$X^*$$
 or Y^* has (RNP) and X^* or Y^* has (AP) \implies
 $(X \widehat{\otimes}_{\varepsilon} Y)^* \equiv X^* \widehat{\otimes}_{\pi} Y^*.$

ii)
$$\mathcal{K}_{\omega^*,\omega}(X^*,Y) \equiv X \widehat{\otimes}_{\varepsilon} Y.$$

 \rightarrow Natural candidate from tensor product theory : $S_0(M) \widehat{\otimes}_{\varepsilon} X$.

 \rightarrow Natural candidate from the theory of Lip functions : $S_0(M, X)$.

22/29

Injective tensor product and bi-duality results

In some cases, we have the relation $S_0(M)^* \equiv \mathcal{F}(M)$ and thus $Lip_0(M) \equiv S_0(M)^{**}$. What about the vector-valued case?

Proposition (Tensor product theory)

i)
$$X^*$$
 or Y^* has (RNP) and X^* or Y^* has (AP) \implies
 $(X \widehat{\otimes}_{\varepsilon} Y)^* \equiv X^* \widehat{\otimes}_{\pi} Y^*.$

ii)
$$\mathcal{K}_{\omega^*,\omega}(X^*,Y) \equiv X \widehat{\otimes}_{\varepsilon} Y.$$

 \rightarrow Natural candidate from tensor product theory : $S_0(M) \widehat{\otimes}_{\varepsilon} X$.

 \rightarrow Natural candidate from the theory of Lip functions : $S_0(M, X)$.

23/29

Injective tensor product and bi-duality results

Theorem (García-Lirola, Rueda Zoca, P.)

If *M* is a proper metric space, then $S_0(M, X) \equiv \mathcal{K}_{\omega^*,\omega}(X^*, S_0(M))$. Thus if $S_0(M)^* \equiv \mathcal{F}(M)^*$, and if $\mathcal{F}(M)$ or X^* has (AP) then $S_0(M, X)^* \equiv \mathcal{F}(M) \widehat{\otimes}_{\pi} X^*$ and $S_0(M, X)^{**} \equiv Lip_0(M, X)$.

Theorem (García-Lirola, Rueda Zoca, P.)

If *M* is a proper metric space, then $S_0(M, X) \equiv \mathcal{K}_{\omega^*,\omega}(X^*, S_0(M))$. Thus if $S_0(M)^* \equiv \mathcal{F}(M)^*$, and if $\mathcal{F}(M)$ or X^* has (AP) then $S_0(M, X)^* \equiv \mathcal{F}(M) \widehat{\otimes}_{\pi} X^*$ and $S_0(M, X)^{**} \equiv Lip_0(M, X)$.

Study of $\mathcal{F}(M)\widehat{\otimes}_{\pi}X$? Two points of view : Tensor product theory and Lip functions theory (depending on the property studied).

Natural questions

- Definition and first properties
- Little Lipschitz spaces and double duality results
- Around some ℓ_1 properties

Output States States

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

Notation

Lipschitz-free spaces

Vector valued case

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

→ Compact operators? (Jiménez-Varguas work)

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

- → Compact operators? (Jiménez-Varguas work)
- \rightarrow Norm attainment?

25/29

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

- → Compact operators? (Jiménez-Varguas work)
- \rightarrow Norm attainment?

In $\mathcal{L}(\mathcal{F}(M), X)$ we have a clear notion of norm attainment for \overline{f} : $\exists \gamma \in \mathcal{F}(M)$ such that $\|\overline{f}(\gamma)\|_X = \|\overline{f}\| (\to \mathcal{NA}(\mathcal{F}(M), X)).$

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

- → Compact operators? (Jiménez-Varguas work)
- \rightarrow Norm attainment?

In $\mathcal{L}(\mathcal{F}(M), X)$ we have a clear notion of norm attainment for \overline{f} : $\exists \gamma \in \mathcal{F}(M)$ such that $\|\overline{f}(\gamma)\|_X = \|\overline{f}\| (\to \mathcal{NA}(\mathcal{F}(M), X))$. In $Lip_0(M, X)$ there are different notions of norm attainment. The

following one is maybe the most natural :

Natural questions

The identification $f \in Lip_0(M, X) \rightarrow \overline{f} \in \mathcal{L}(\mathcal{F}(M), X)$ raise many natural questions. For instance :

- → Compact operators? (Jiménez-Varguas work)
- \rightarrow Norm attainment?

In $\mathcal{L}(\mathcal{F}(M), X)$ we have a clear notion of norm attainment for \overline{f} : $\exists \gamma \in \mathcal{F}(M)$ such that $\|\overline{f}(\gamma)\|_X = \|\overline{f}\| (\to \mathcal{NA}(\mathcal{F}(M), X))$. In $Lip_0(M, X)$ there are different notions of norm attainment. The following one is maybe the most natural :

Definition (Strong norm attainment)

We say that $f \in Lip_0(M, X)$ strongly attains its norm if there exists $x \neq y$ such that $||f(x) - f(y)||_X = ||f||_{Lip}d(x, y)$. We denote $Lip_{SNA}(M, X)$ the set of all Lipschitz functions which strongly attain their norm.

Norm attainment

- Definition and first properties
- Little Lipschitz spaces and double duality results
- Around some ℓ_1 properties

Output: Sector valued case

- Projective tensor product
- Injective tensor product and bi-duality results
- Natural questions
- Norm attainment

イロト イヨト イヨト イ 26/29 Norm attainment

Theorem (García-Lirola, Rueda Zoca, P.)

- i) Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Then $\mathcal{NA}(\mathcal{F}(M), X) = Lip_{SNA}(M, X)$
- ii) Let M be a proper m. s. such that $S_0(M)^* \equiv \mathcal{F}(M)$. Assume that $\mathcal{F}(M)$, X^* have (RNP), and $\mathcal{F}(M)$ or X^* has (AP), then : $\overline{\mathcal{NA}(\mathcal{F}(M), X^{**})}^{\|\cdot\|} = \mathcal{L}(\mathcal{F}(M), X^{**})$ and $\overline{Lip_{SNA}(M, X)}^{\|\cdot\|} = Lip_0(M, X^{**})$.

Notation

Lipschitz-free spaces

Vector valued case

Norm attainment

Thank you very much!

<ロト < 部ト < 目ト < 目ト 目 のへの 28/29 Norm attainment

- C. Petitjean, Lipschitz-free spaces and Schur properties, J. of Math. Anal. Appl. Available at : https://arxiv.org/abs/1603.01391
- L. García-Lirola, C. Petitjean and A. Rueda Zoca, *On the structure of spaces of vector-valued Lipschitz functions*, to appear in Studia Math. Available at : https://arxiv.org/pdf/1606.05999.pdf.