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Abstract

We analyse the relationship between different extremal notions in Lipschitz free spaces. We
completely characterise strongly exposed points in the unit ball of a free space. We prove that
every preserved extreme point of the unit ball is also a denting point. We show in some
particular cases that every extreme point is a molecule, and that a molecule is extreme
whenever the two points, say x and y , which define it satisfy that the metric segment [x , y ]
only contains x and y . As an application, we get some new consequences about norm-
attainment in spaces of vector-valued Lipschitz functions.
This is based in a joint work with A. Procházka, C. Petitjean and A. Rueda Zoca.

Introduction

We are interested in studying the following families of distinguished points in the unit
ball BX of a Banach space X .

Definition

A point x in the unit ball BX of a Banach space X is said to be:

an extreme point of BX if x = λy + (1− λ)z , y , z ∈ BX , λ ∈ (0, 1), then
x = y = z .

a preserved extreme point of BX if x is an extreme point of BX ∗∗,

a denting point of BX if the slices of BX containing x are a neighbourhood basis
of x in (BX , ‖ ‖).

an exposed point of BX if there is f ∈ X ∗ such that

f (x) > f (y) for every y ∈ BX \ {x}.
a weak-strongly exposed point of BX if there is f ∈ X ∗ such that for every
sequence (xn)n in BX we have xn

w→ x whenever f (xn)→ f (x), equivalently, the
slices of BX provided by f are a neighbourhood basis of x in (BX ,w).

a strongly exposed point of BX if there is f ∈ X ∗ such that for every sequence
(xn)n in BX we have xn → x whenever f (xn)→ f (x), equivalently, the slices of BX

provided by f are a neighbourhood basis of x in (BX , ‖ ‖).

It is not difficult to check that the above concepts are related in the following way:

strongly exposed weak-strongly exposed exposed

denting preserved extreme extreme

Moreover, none of these implications reverse in general.
Our aim is to study the former notions in the particular case in which the Banach space
is the Lipschitz free space F(M) over a metric space (M , d). Recall that the space
Lip0(M) of Lipschitz functions on M vanishing at a distinguised point 0 ∈ M is a Banach
space when it is endowed with the norm given by the best Lipschitz constant. Then

F(M) := span{δ(x) : x ∈ M} ⊂ Lip0(M)∗,

where 〈δ(x), f 〉 = f (x)〉 for f ∈ Lip0(M). We refer the reader to [1, 2] for the
fundamental properties and applications of Lipschitz free spaces. Let us highlight that
for every Banach space Y and every Lipschitz function f : M → Y such that f (0) = 0
there is a unique bounded linear operator f̂ : F(M)→ Y such that f̂ ◦ δ = f . Moreover,
‖f̂ ‖ = ‖f ‖. It follows from this fact that F(M)∗ is isometric to Lip0(M).
The study of the extremal structure of BF(M) probably was started by Weaver in [2],
where it is proved that every preserved extreme point of BF(M) is a molecule,
that is, an element of the form

mxy =
δ(x)− δ(y)

d(x , y)
, x , y ∈ M , x 6= y .

We denote V the set of molecules in F(M). Note that

‖f ‖ = sup

{
f (x)− f (y)

d(x , y)
: x , y ∈ M , x 6= y

}
= sup{〈f ,mxy〉 : mxy ∈ V }

and so V is 1-norming for Lip0(M). Equivalently,

BF(M) = conv(V ).

That provides a useful way for describing the norm in F(M).

Extreme points in BF(M)

In order to get some intuition, let us assume first that M just consists of three points,
M = {0, x , y}. Let us define the following metrics on M :

d1(x , 0) = d1(y , 0) = d1(x , y) = 1 d2(x , 0) = d2(y , 0) = 1, d2(x , y) = 2

BF(M,d1)

bc bc

bc

bcbc

bc
mx0

my0myx

m0x

m0y mxy

BF(M,d2)

bc

bc

bc

bc

bc

bc
mx0

my0

myx

m0x

m0y

mxy

Note that in F(M , d1) the set of extreme points of the ball coincides with the set of
molecules. On the other hand, the molecule mxy is not an extreme point of the ball of
F(M , d2). The reason is that 0 belongs to the metric segment [x , y ] in (M , d2).
More generally, for a molecule mxy to be an extreme point of BF(M) it is necessary that
the metric segment [x , y ] between x and y reduces to {x , y}. Indeed, if
d(x , z) + d(z , y) = d(x , y) for some z ∈ M \ {x , y} then

mxy =
d(x , z)

d(x , y)
mxz +

d(z , y)

d(x , y)
mzy

and so mxy is not an extreme point of BF(M). This fact motivates the following question:

Open problem

Assume that [x , y ] = {x , y}. Is mxy an extreme point of BF(M)?

Aliaga and Guirao have recently proved that the above problem has an affirmative
answer if M is compact. We have shown the following:

Let M be a bounded uniformly discrete (i.e. infx 6=y d(x , y) > 0) metric space. If
[x , y ] = {x , y}, then mxy is an extreme point of BF(M).

The above result allow us to find an example of a bounded uniformly discrete countable
metric space M such that F(M) is not isometric to a dual Banach space.
Another natural question is the following:

Open problem

If µ is an extreme point of BF(M), is µ necessarily a molecule µ = mxy?

We have shown that this question has an affirmative answer in some particular cases.

Theorem 1 (GL – Procházka – Petitjean – Rueda Zoca, 2017)

Let M be a bounded separable metric space. Assume that there is a subspace of lip0(M)
(little-Lipschitz functions) which is predual of F(M) and δ(M) is weak*-closed. Then
given µ ∈ BF(M) the following are equivalent:

(i) µ is an extreme point of BF(M).

(ii) µ is an exposed point of BF(M).

(iii) There are x , y ∈ M , x 6= y , such that [x , y ] = {x , y} and µ = mxy .

This applies in the following cases:

M compact countable.

(M , dα), 0 < α < 1 compact α-snowflaking of a metric space (M , d).

M bounded uniformly discrete admitting a compact topology τ such that d is τ -lsc.

Theorem 1 has the following application to the norm-attainment of Lipschitz functions,
which extends a result in [1].

Let Y be a Banach space and M be a metric space satisfying the hypotheses of Theo-
rem 1. Then every Lipschitz function f : M → Y which attains its norm as an operator
from F(M) to Y also attains its Lipschitz norm on a pair of points in M .

Strongly exposed points in BF(M)

Weaver proved that mxy is a preserved extreme point of BF(M) whenever there is
f ∈ Lip0(M) peaking at (x , y), that is, 〈f ,mxy〉 = 1 and sup(u,v)/∈U 〈f ,muv〉 < 1 for
every open subset U of M2 \∆ containing (x , y) and (y , x).
Indeed, peaking functions characterise strongly exposed points in BF(M).

Theorem 2 (GL – Procházka – Rueda Zoca, 2017)

Let x , y ∈ M , x 6= y . The following assertions are equivalent:

(i) The molecule mxy is a strongly exposed point of BF(M).

(ii) There is f ∈ Lip0(M) peaking at (x , y).

(iii) There is ε > 0 such that

d(x , z) + d(z , y)− d(x , y) > εmin{d(x , z), d(z , y)} for all z ∈ M \ {x , y}.

This result extends a characterisation of peaking functions in subsets of R-trees due to
Dalet, Kaufmann and Procházka [3].
It was shown in [4] that if M is compact then Lip0(M) has the Daugavet property if and
only if condition (iii) fails for every pair of distinct points in M . As a consequence, the
following dichotomy holds:

Let M be a compact metric space. Then either Lip0(M) has the Daugavet property (and
so every slice of BF(M) has diameter 2) or BF(M) has a strongly exposed point.

Preserved extreme points in BF(M)

Aliaga and Guirao have recently proved a characterisation of preserved extreme points in
BF(M) in the spirit of Theorem 2. Namely, they prove in [5] that mxy is a preserved
extreme point of BF(M) if and only if for every ε > 0 there is δ > 0 such that

(1− δ)(d(x , z) + d(z , y)) < d(x , y), z ∈ M \ {x , y} ⇒ min{d(x , z), d(y , z)} < ε.

We have proved the following result:

Theorem 3 (GL – Procházka – Petitjean – Rueda Zoca, 2017)

Every preserved extreme point of BF(M) is a denting point, and every weak-strongly
exposed point of BF(M) is a strongly exposed point.

Now, one may wonder if some more implications in the diagram hold in the particular
case of BF(M). However, we have shown:

There is a compact metric space M with a denting point of BF(M) which is not
strongly exposed.

There is a uniformly discrete countable metric space M with an exposed point of
BF(M) which is not a preserved extreme point.

Finally, a curious consequence of Theorem 3 is the following:

The norm of Lip0(M) is Gâteaux differentiable at f if and only if it is Fréchet differentiable
at f .
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[6] L. Garćıa-Lirola, A. Procházka, and A. Rueda Zoca, “A characterisation of the Daugavet property in spaces of Lipschitz

functions.” arXiv:1705.05145, 2017.
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